
Linux Kernel Programming
Software Engineering Tools and Techniques for the Linux Kernel

Pierre Olivier

Systems Software Research Group @ Virginia Tech

January 19, 2017

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 1 / 34



Source: https://xkcd.com/378/

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 2 / 34

https://xkcd.com/378/


Outline

1 Kernel Sources & Compilation

2 Exploring the code

3 Coding

4 Version control with Git

5 Sources of information about Linux

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 3 / 34



Kernel Sources & Compilation

Outline

1 Kernel Sources & Compilation

2 Exploring the code

3 Coding

4 Version control with Git

5 Sources of information about Linux

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 4 / 34



Kernel Sources & Compilation Getting the kernel sources

Kernel Sources & Compilation
Getting the kernel sources

I Download the sources here: https://www.kernel.org
I Click the large button to get the latest version
I Want a specific version ?

I https://www.kernel.org/pub/ → linux → kernel → vX.Y
→ linux.X.Y.Z.tar.{gz|xz}

I Extracting the sources:
1 tar xf linux.X.Y.Z.tar.gz # (Same thing for .tar.xz)
2 cd linux.X.Y.Z
3 ls
4 arch/ crypto/ include/ kernel/ net/ security/
5 block/ Documentation/ init/ lib/ README sound/
6 certs/ drivers/ ipc/ MAINTAINERS REPORTING-BUGS tools/
7 COPYING firmware/ Kbuild Makefile samples/ usr/
8 CREDITS fs/ Kconfig mm/ scripts/ virt/

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 5 / 34

https://www.kernel.org
https://www.kernel.org/pub/


Kernel Sources & Compilation Getting the kernel sources

Kernel Sources & Compilation
Kernel source directory tree

I Interesting folders [2]:
I arch/: architecture specific code, contains one folder per

supported architecture:
1 ls arch/
2 alpha/ blackfin/ hexagon/ metag/ openrisc/ sh/ x86/
3 arc/ c6x/ ia64/ microblaze/ parisc/ sparc/ xtensa/
4 arm/ cris/ Kconfig mips/ powerpc/ tile/
5 arm64/ frv/ m32r/ mn10300/ s390/ um/
6 avr32/ h8300/ m68k/ nios2/ score/ unicore32/

I Example of architecture specific code: boot process, context switch,
page table management, etc.

I include/: kernel header files
I init/: kernel initialization code

I Note that most of the boot process is architecture specific and
actually contained in arch/

I mm/: memory management
I drivers/: device drivers

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 6 / 34



Kernel Sources & Compilation Getting the kernel sources

Kernel Sources & Compilation
Kernel source directory tree (2)

I Interesting folders (continued):
I ipc/: Inter-Process Communication
I fs/: filesystems
I kernel/: generic core kernel
I net/: networking
I block/: block layer
I lib/: helper libraries
I scripts/: scripts used during the kernel configuration and

compilation process
I Documentation/: kernel documentation (text files)
I samples/: example of usage of some kernel

functions/mechanisms
I tools/: a set of user space programs, scripts, for various usage

(debugging, tracing, performance evaluation, etc.)

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 7 / 34



Kernel Sources & Compilation Compiling and installing the kernel

Kernel Sources & Compilation
Compiling and installing the kernel - Configuration file

I Configuration file defining compilation options (∼ 3500 for x86)
I Should be present at the root of the source directory and named
.config

I Generate the default configuration file for one architecture:
make <arch> defconfig

I Check the default configuration files in arch/<arch>/configs
I Or get the configuration file for an existing kernel running on your

target platform
I Check the kernel version with uname -a, then look in /boot or

/proc/config.gz
I Version of the configuration file older than the target kernel ?

- make oldconfig
- You will be prompted for each new options
- Default choice for each new option:
yes "" | make oldconfig

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 8 / 34



Kernel Sources & Compilation Compiling and installing the kernel

Kernel Sources & Compilation
Compiling and installing the kernel - Configuration file (2)

I Edit options: make menuconfig
I Need libncurses:

1 sudo apt-get install libncurses5-dev # Debian/Ubuntu
2 sudo yum install ncurses-devel # Fedora/CentOS/RedHat

I Search: type /

I Help: type ?

I [*]→ selected,
[M]→ module

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 9 / 34



Kernel Sources & Compilation Compiling and installing the kernel

Kernel Sources & Compilation
Compiling and installing the kernel - Compilation and installation

1 The .config file should be ready
2 Compile the kernel: make bzImage (x86)

I The uncompressed kernel binary is vmlinux
I The compressed one (x86) is arch/x86/boot/bzImage

3 Compile the modules: make modules
4 Installation:
sudo make modules install
sudo make install
+ update bootloader configuration (Ubuntu: sudo update-grub)

I Use the parallel build feature of make!
make <target> -j<number of cores>

I Xeon E5-2695:
I make bzImage (equivalent to make -j1 bzImage): 12m50s
I make bzImage -j2: 6m48s
I make bzImage -j24: 44s

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 10 / 34



Kernel Sources & Compilation Compiling and installing the kernel

Kernel Sources & Compilation
Compiling and installing the kernel - Compilation and installation: summary

1 # cd into Linux sources directory:
2 cd linux-4.9
3
4 # Generate default configuration file:
5 make x86_64_defconfig
6
7 # Or use an existing one (potentially older version):
8 cp -f /boot/config-4.8.0-32-generic .config && yes "" | make oldconfig
9

10 # compile the kernel and modules:
11 make -j4 bzImage
12 make -j4 modules
13
14 # install modules and kernel:
15 sudo make modules_install
16 sudo make install
17
18 # Update bootloader configuration:
19 sudo update-grub
20
21 # Reboot into new kernel:
22 sudo reboot

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 11 / 34



Kernel Sources & Compilation Compiling and installing the kernel

Kernel Sources & Compilation
Compiling and installing the kernel - Cross-compiling

I Compiling on one arch (host) and
producing a binary for another (target)

I Embedded systems development
I Cross compiler toolchain: for example
arm-linux-{gcc, ld, ar}, etc.

I When cross-compiling Linux, the following environment variables
are accessed by make and must be set:

I ARCH: target architecture
I CROSS COMPILE: cross-compiler toolchain prefix

I For example with arm-linux-gcc, the prefix is arm-linux-

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 12 / 34



Kernel Sources & Compilation Compiling and installing the kernel

Kernel Sources & Compilation
Compiling and installing the kernel - Cross-compiling (2)

I Two solution for setting the environment variables:
1 With each make invocation

1 ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- make defconfig
2 ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- make menuconfig
3 # etc.

I Not a very good idea as when one forgot to set these variables, they
default to the native environment leading to inconsistent build

2 Exported in the shell
1 export ARCH=arm64
2 export CROSS_COMPILE=aarch64-linux-gnu-
3 make defconfig
4 make menuconfig
5 # etc.

I Installing a cross-compiled kernel, or a kernel on an ”exotic”
platform:

I Very platform/distribution-dependent

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 13 / 34



Exploring the code

Outline

1 Kernel Sources & Compilation

2 Exploring the code

3 Coding

4 Version control with Git

5 Sources of information about Linux

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 14 / 34



Exploring the code

Exploring the code
Compiling and installing the kernel - Tools list

1 Linux Cross Reference
2 Cscope
3 Graphical IDEs
4 Text-based IDEs

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 15 / 34



Exploring the code Linux Cross Reference

Exploring the code
Linux Cross Reference

I Code indexing tool [1] with a web interface
I Don’t install it! One instance is running here:

http://lxr.free-electrons.com/

I Allows to:
I Browse the code of different Linux versions
I Search for identifiers (functions, variables, etc.)
I Quickly lookup a function declaration/definition

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 16 / 34

http://lxr.free-electrons.com/


Exploring the code Linux Cross Reference

Exploring the code
Linux Cross Reference (2)

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 17 / 34



Exploring the code Linux Cross Reference

Exploring the code
Linux Cross Reference (2)

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 17 / 34



Exploring the code Linux Cross Reference

Exploring the code
Linux Cross Reference (2)

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 17 / 34



Exploring the code Linux Cross Reference

Exploring the code
Linux Cross Reference (2)

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 17 / 34



Exploring the code Cscope

Exploring the code
Cscope

I Command line tool to browse (potentially large) C codebases
I Installation: sudo {apt-get|yum} install cscope
I Usage:

1 cd <linux source directory>
2 make cscope
3 # or:
4 ARCH=x86 make cscope
5 # The regular way is to use cscope -R but this Makefile target is optimized for the

kernel source code

I Building the database takes a few seconds on the first run or each
time the code changes

I Search for:
I C identifier occurrences (variable name, function name,

typedef/struct, label)
I Functions/variables definitions
I Functions called by/calling function f
I Text string

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 18 / 34



Exploring the code Cscope

Exploring the code
Cscope (2)

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 19 / 34



Exploring the code Cscope

Exploring the code
Cscope (2)

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 19 / 34



Exploring the code Cscope

Exploring the code
Cscope (2)

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 19 / 34



Exploring the code Cscope

Exploring the code
Cscope (2)

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 19 / 34



Exploring the code Cscope

Exploring the code
Cscope (2)

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 19 / 34



Exploring the code Cscope

Exploring the code
Cscope (2)

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 19 / 34



Exploring the code Other code browsing tools

Exploring the code
Other code browsing tools

I OpenGrok: https://opengrok.github.io/OpenGrok/
I GrokBit: https://grokbit.com/
I Plenty of IDEs have code browsing functionalities

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 20 / 34

https://opengrok.github.io/OpenGrok/
https://grokbit.com/


Coding

Outline

1 Kernel Sources & Compilation

2 Exploring the code

3 Coding

4 Version control with Git

5 Sources of information about Linux

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 21 / 34



Coding Development Environment

Coding
Development Environment

Development Machine:
I Should run Linux as the OS (Ubuntu, Debian, Fedora, etc.)
I Development can be done natively or inside a virtual machine
I Machine specs:

I Uncompressed kernel sources: 762M for Linux 4.9
I Compiled (Debian default config): 11G
I 1 CPU and 256MB of ram is sufficient ...
I ... however more cores (-j flag for make) and RAM allows to

compile faster
I ccache can also speed up the compilation

I {apt-get|yum} install ccache
I http://askubuntu.com/questions/470545/
how-do-i-set-up-ccache

I Testing (running a recently modified kernel):
should be done in a virtual machine

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 22 / 34

http://askubuntu.com/questions/470545/how-do-i-set-up-ccache
http://askubuntu.com/questions/470545/how-do-i-set-up-ccache


Coding Development Environment

Coding
Development Environment (2)

I Editors:
1 Your regular text editor!

I Graphical: gedit, geany, emacs, kate, etc.
I Console-based: vim, nano, emacs, etc.
I sudo {apt-get|yum} install <name>

2 More complex/complete graphical IDEs:
I Eclipse, Netbeans, CLion, Visual Studio Code, etc.
I Not recommended
I Some of these have interesting code-browsing functions
I However code indexing for some is disturbed by the large codebase

of the kernel

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 23 / 34



Coding Vim configuration for kernel coding/code browsing

Coding
Vim configuration for kernel coding/code browsing

I Vim can use the tag database of cscope, as well as ctags
I sudo apt-get install cscope exuberant-ctags
I yum install cscope ctags

I Generate the databases:
1 cd <linux source dir>
2 make cscope tags -j2

I Launch vim:
1 vim init/main.c

I Search for function definition/variable declaration:
1 :tag start_kernel
2 :cs find global start_kernel

I Command usage:
1 :help tag
2 :help cs

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 24 / 34



Coding Vim configuration for kernel coding/code browsing

Coding
Vim configuration for kernel coding/code browsing (2)

I Another way to find a function definition/variable declaration:
I Put the cursor on the symbol name and press ctrl + ]

I To navigate back and forth between file:
1 :bp
2 :bn

I More info:
http://stackoverflow.com/questions/33676829/
vim-configuration-for-linux-kernel-development

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 25 / 34

http://stackoverflow.com/questions/33676829/vim-configuration-for-linux-kernel-development
http://stackoverflow.com/questions/33676829/vim-configuration-for-linux-kernel-development


Coding Coding style

Coding
Coding style

I Standard coding style for the kernel:
I consistency is important to help understanding the code (and

grading projects ;))
I Details: textbook chapter 20 + Linux
Documentation/CodingStyle

I Indentation: tabs, 8 characters
I switch: no need to indent cases
I spaces: if (!x); func call(a + b);
I braces: opening: same line, closing: new line
I line length: 80 characters
I naming: no CamelCase, use underscores
I comments: C-style (/* comment */, no C++ // comment)
I typedefs: avoid them
I #ifdef: minimize them

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 26 / 34



Coding Coding style

Coding
Coding style (2)

I indent:
1 indent -kr -i8 -ts8 -sob -l80 -ss -bs -psl <file>

or look in the kernel sources in scripts/Lindent to
automatically invoke that command

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 27 / 34



Coding Coding style

Coding
Coding style (3)

1 /*
2 * a multi-lines comment
3 * (no C++ ’//’ !)
4 */
5
6 struct foo {
7 int member1;
8 double member2;
9 }; /* no typedef ! */

10
11 #ifdef CONFIG_COOL_OPTION
12 int cool_function(void) {
13 return 42;
14 }
15 #else
16 int cool_function(void) { }
17 #endif /* CONFIG_COOL_OPTION */
18
19
20 void my_function(int the_param, char *

string, int a_long_parameter,

21 int another_long_parameter) {
22 int x = the_param % 42;
23
24 if (!the_param)
25 do_stuff();
26
27 switch (x % 3) {
28 case 0:
29 do_some_stuff();
30 cool_function();
31 break;
32 case 1:
33 /* Fall through */
34 default:
35 do_other_stuff();
36 cool_function();
37 }
38 }

I Strict adherence to the kernel code-style is not asked for the
projects in this course

I However, common sense and consistency will be evaluated

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 28 / 34



Version control with Git

Outline

1 Kernel Sources & Compilation

2 Exploring the code

3 Coding

4 Version control with Git

5 Sources of information about Linux

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 29 / 34



Version control with Git

Version control with Git
Coding style

I Git is a Version Control Software (VCS)
I Initially developed by Linus Torvalds
I Extensively used by the Linux community

I Manage changes made to a codebase, ease the job of one or
several programmers working on the same project

I Code is maintained on a server: (not so) centralized codebase
I Each programmer downloads a local copy for modification and

propagate their changes through atomic actions
I No deletion, history maintained: you can roll-back in case of trouble
I Git also helps in solving issues that arise with two programmers

working on the same file

I Git (software) 6= Github (provider)!

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 30 / 34



Sources of information about Linux

Outline

1 Kernel Sources & Compilation

2 Exploring the code

3 Coding

4 Version control with Git

5 Sources of information about Linux

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 31 / 34



Sources of information about Linux

Sources of information about Linux

I Books:
I Love, R. (2010). Linux Kernel Development, 3rd Edition.

Addison-Wesley Professional. Pp. xxv, 440.
I Bovet, D. P., & Cesati, M. (2005). Understanding the Linux Kernel,

3rd Edition. O’Reilly Media. Pp. xvi, 944;
I Corbet, J., Rubini, A., & Kroah-Hartman, G. (2005). Linux Device

Drivers, 3rd Edition. O’Reilly Media. Pp xvii, 640;
I Mauerer, W. (2008). Professional Linux Kernel Architecture, 1st

Edition. Wrox. Pp. xxx, 1368;
I Love, R. (2013). Linux System Programming: Talking Directly to the

Kernel and C Library, 2nd Edition. O’Reilly Media. Pp. xx, 456.

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 32 / 34



Sources of information about Linux

Sources of information about Linux (2)

I Linux weekly news: https://lwn.net
I Kernel mailing lists:
http://vger.kernel.org/vger-lists.html

I Linux-insides: https://0xax.gitbooks.io/
linux-insides/content/index.html

I Not comprehensive, but relatively recent information (Linux 3.18)
I Wikis hosted on kernel.org: https://www.wiki.kernel.org/

I Interesting info about filesystems, git, perf, etc.
I Kernel newbies: https://kernelnewbies.org/

I Guides on kernel development

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 33 / 34

https://lwn.net
http://vger.kernel.org/vger-lists.html
https://0xax.gitbooks.io/linux-insides/content/index.html
https://0xax.gitbooks.io/linux-insides/content/index.html
https://www.wiki.kernel.org/
https://kernelnewbies.org/


Bibliography

Bibliography I

[1] Linux cross reference official website.
http://lxr.linux.no/.
Accessed: 2016-12-28.

[2] Tldp - the linux kernel sources.
http://www.tldp.org/LDP/tlk/sources/sources.html.
Accessed: 2016-12-27.

Pierre Olivier (SSRG@VT) LKP - Tools & Techniques for the Kernel January 19, 2017 34 / 34

http://lxr.linux.no/
http://www.tldp.org/LDP/tlk/sources/sources.html

	Kernel Sources & Compilation
	Getting the kernel sources
	Compiling and installing the kernel

	Exploring the code
	Linux Cross Reference
	Cscope
	Other code browsing tools

	Coding
	Development Environment
	Vim configuration for kernel coding/code browsing
	Coding style

	Version control with Git
	Sources of information about Linux

