
Linux Kernel Programming
System Calls

Pierre Olivier

Systems Software Research Group @ Virginia Tech

March 23, 2017

Pierre Olivier (SSRG@VT) LKP - System Calls March 23, 2017 1 / 24



Outline

1 System calls: general notions

2 Syscall invocation: user space side

3 Syscall execution: kernel space side

4 Implementing a new system call

Pierre Olivier (SSRG@VT) LKP - System Calls March 23, 2017 2 / 24



System calls: general notions

Outline

1 System calls: general notions

2 Syscall invocation: user space side

3 Syscall execution: kernel space side

4 Implementing a new system call

Pierre Olivier (SSRG@VT) LKP - System Calls March 23, 2017 3 / 24



System calls: general notions

System calls: general notions
Kernel entry point from user space

I The kernel:
I Manages the hardware
I Provides interfaces or

user space processes to
access the hardware
and perform privileged
operations

I User space cannot
access HW/perform
privilege operations
directly

Interfaces + user space privileges restriction: the key to stability and
security in the system

Pierre Olivier (SSRG@VT) LKP - System Calls March 23, 2017 4 / 24



System calls: general notions

System calls: general notions
User/kernel mode

System calls (syscalls) are the one and only way an application
can enter the kernel to request OS services and privileged

operations such as accessing the hardware

I Examples of privileged/restricted operations:
I Privileged CPU instructions (x86 examples): HLT, INVLPLG, MOV

to control registers, etc.
I Including IO related instructions (IN/OUT)

I Access to all memory areas
I Including areas mapping device registers

Pierre Olivier (SSRG@VT) LKP - System Calls March 23, 2017 5 / 24



System calls: general notions

System calls: general notions
Examples of syscalls

Syscalls can be classified into groups:

I Process management/scheduling: fork, exit, execve, nice,
{get|set}priority, {get|set}pid, etc.

I Memory management: brk, mmap, swap{on|off}, etc.
I File system: open, read, write, lseek, stat, etc.
I Inter-Process Communication: pipe, shmget, semget, etc.
I Time management: {get|set}timeofday, time,
timer create, etc.

I Others: {get|set}uid, syslog, connect, etc.

Pierre Olivier (SSRG@VT) LKP - System Calls March 23, 2017 6 / 24



System calls: general notions

System calls: general notions
System calls table syscall identifier

I For x86 64, the syscall list is present in
arch/x86/syscalls/syscall 64.tbl (4.0, location changes
with versions)

I Text file translated to c source code by a script during the
compilation process

1 ## 64-bit system call numbers and entry vectors
2 #
3 # The format is:
4 # <number> <abi> <name> <entry point>
5 #
6 # The abi is "common", "64" or "x32" for this file.
7 #
8 0 common read sys_read
9 1 common write sys_write

10 2 common open sys_open
11 3 common close sys_close
12 # ...

I Syscall identifier: unique integer
I Currently 352 (linux 4.9) for x86 64
I New syscalls identifiers are given sequentially

Pierre Olivier (SSRG@VT) LKP - System Calls March 23, 2017 7 / 24



Syscall invocation: user space side

Outline

1 System calls: general notions

2 Syscall invocation: user space side

3 Syscall execution: kernel space side

4 Implementing a new system call

Pierre Olivier (SSRG@VT) LKP - System Calls March 23, 2017 8 / 24



Syscall invocation: user space side C library

Syscall invocation: user space side
C library

I Syscalls are rarely invoked directly
I Most of them are wrapped by the C library
I The programmer uses the C library Application Programming

Interface (API)

I System calls behavior is documented in man pages
1 man <syscall name>

Pierre Olivier (SSRG@VT) LKP - System Calls March 23, 2017 9 / 24



Syscall invocation: user space side C library

Syscall invocation: user space side
C library: Invocation without wrapper

I Some syscalls does not have a wrapper in the C library
I A syscall can be called directly through syscall

I man syscall

1 #include <unistd.h>
2 #include <sys/syscall.h> /* For SYS_xxx definitions */
3
4 int main(void)
5 {
6 char message[] = "hello, world!\n";
7 int bytes_written = -42;
8
9 /* the first "1" is the "write" syscall identifier */

10 /* the second "1" is the standard output file descriptor */
11 /* the remaining arguments are the "write" syscall arguments */
12 bytes_written = syscall(1, 1, message, 14);
13
14 /* or */
15
16 bytes_written = syscall(SYS_write, 1, message, 14);
17
18 return 0;
19 }

syscall.c

Pierre Olivier (SSRG@VT) LKP - System Calls March 23, 2017 10 / 24



Syscall invocation: user space side C library

Syscall invocation: user space side
Invocation without the C library

I On x86 64, syscalls can be used directly through the syscall
assembly instruction

I Usage example: disabling the C library considerably reduces the
size of a program

1 .global _start
2
3 .text
4 _start:
5 # write(1, message, 14)
6 mov $1, %rax
7 mov $1, %rdi
8 mov $message, %rsi
9 mov $14, %rdx

10 syscall
11
12 # exit(0)
13 mov $60, %rax
14 xor %rdi, %rdi
15 syscall
16 message:
17 .ascii "Hello, world!\n"

syscall asm.s

I Compilation & execution:
1 gcc -c syscall_asm.s
2 -o syscall_asm.o
3 ld syscall_asm.o
4 -o syscall_asm
5 ./syscall_asm
6 hello, world!

I Parameters are passed in
registers

Pierre Olivier (SSRG@VT) LKP - System Calls March 23, 2017 11 / 24



Syscall execution: kernel space side

Outline

1 System calls: general notions

2 Syscall invocation: user space side

3 Syscall execution: kernel space side

4 Implementing a new system call

Pierre Olivier (SSRG@VT) LKP - System Calls March 23, 2017 12 / 24



Syscall execution: kernel space side User/kernel space transition

Syscall execution: kernel space side
User/kernel space transition

I User space applications cannot call kernel code directly
I For security and stability, kernel code resides in a memory space

that cannot be accessed from user space

I So how is a syscall invoked from user space ?

Pierre Olivier (SSRG@VT) LKP - System Calls March 23, 2017 13 / 24



Syscall execution: kernel space side User/kernel space transition

Syscall execution: kernel space side
User/kernel space transition (2)

I A few words about interrupts:
1 Asynchronous: hardware interrupts, issued from devices

I Ex: keyboard indicating that a key has been pressed
2 Synchronous: exceptions, triggered involuntarily by the program

itself
I Ex: divide by zero, page fault, etc.

3 Synchronous, programmed exceptions: software interrupts,
issued voluntarily by the code of the program itself

I INT instruction for x86

I When an interrupt is received by the CPU, it stops whatever it is
doing and the kernel executes the interrupt handler

Pierre Olivier (SSRG@VT) LKP - System Calls March 23, 2017 14 / 24



Syscall execution: kernel space side User/kernel space transition

Syscall execution: kernel space side
User/kernel space transition (3)

I So how is a syscall invoked from user space ?
I User space put the syscall identifier and parameters values into

registers (x86)
I Identifier in rax
I x86 64: parameters in rdi, rsi, rdx, r10, r8 and r9

I Then issues a software interrupt
I On x86, interrupt 128 was used:

1 int $0x80

I Now sysenter (x86 32) and syscall (x86 64)
I The kernel executes the interrupt handler, system call handler

I Puts the registers values into a data structure placed on the stack
I Checks the validity of the syscall (number of arguments)
I Then execute the system call implementation:

1 call sys_call_table(, %rax, 8)

Pierre Olivier (SSRG@VT) LKP - System Calls March 23, 2017 15 / 24



Syscall execution: kernel space side Syscall implementation execution: example with gettimeofday

Syscall execution: kernel space side
Syscall implementation execution: example with gettimeofday

I Example: gettimeofday
I implementation in sys gettimeofday

1 NAME
2 gettimeofday, settimeofday - get / set time
3
4 SYNOPSIS
5 #include <sys/time.h>
6
7 int gettimeofday(struct timeval *tv, struct timezone *tz);
8
9 int settimeofday(const struct timeval *tv, const struct timezone *tz);

10
11 DESCRIPTION
12 The functions gettimeofday() and settimeofday() can get and set the time as well as a

timezone. The tv argument is a struct timeval (as specified in <sys/time.h>):
13
14 struct timeval {
15 time_t tv_sec; /* seconds */
16 suseconds_t tv_usec; /* microseconds */
17 };
18
19 and gives the number of seconds and microseconds since the Epoch.

Pierre Olivier (SSRG@VT) LKP - System Calls March 23, 2017 16 / 24



Syscall execution: kernel space side Syscall implementation execution: example with gettimeofday

Syscall execution: kernel space side
Syscall implementation execution: example with gettimeofday (2)

I Usage example:

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <sys/time.h>
4
5 int main(void)
6 {
7 struct timeval tv;
8 int ret;
9

10 ret = gettimeofday(&tv, NULL);
11 if(ret == -1)
12 {
13 perror("gettimeofday");
14 return EXIT_FAILURE;
15 }
16
17 printf("Local time:\n");
18 printf(" sec:%lu\n", tv.tv_sec);
19 printf(" usec:%lu\n", tv.tv_usec);
20
21 return EXIT_SUCCESS;
22 }

1 ./gettimeofday
2 Local time:
3 sec:1485214886
4 usec:523511

Pierre Olivier (SSRG@VT) LKP - System Calls March 23, 2017 17 / 24



Syscall execution: kernel space side Syscall implementation execution: example with gettimeofday

Syscall execution: kernel space side
Syscall implementation execution: example with gettimeofday (3)

I Let’s check it out using vim code indexing features

1 SYSCALL_DEFINE2(gettimeofday, struct timeval __user

*, tv, struct timezone __user *, tz)
2 {
3 if (likely(tv != NULL)) {
4 struct timeval ktv;
5 do_gettimeofday(&ktv);
6 if (copy_to_user(tv, &ktv, sizeof(ktv)))
7 return -EFAULT;
8 }
9 if (unlikely(tz != NULL)) {

10 if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
11 return -EFAULT;
12 }
13 return 0;
14 }

I SYSCALL DEFINE2
I Macro to define
sys gettimeofday
(2 parameters)

I likely/unlikely
I Compiler assisted

branch predictor
hints

I user pointers and copy {to|from} user
I Kernel / user space memory management

Pierre Olivier (SSRG@VT) LKP - System Calls March 23, 2017 18 / 24



Syscall execution: kernel space side likely/unlikely and kernel/user memory transfers

Syscall execution: kernel space side
likely/unlikely and kernel/user memory transfers

I likely/unlikely
I include/linux/compiler.h:

1 #define likely(x) (__builtin_expect(!!(x), 1)) /* !! convert to int and */
2 #define unlikely(x) (__builtin_expect(!!(x), 0)) /* into actual 0 or 1 */

I User vs kernel memory areas

I User space cannot access
kernel memory

I Kernel code should not
directly access user memory

I How to exchange data with
pointers ?

Pierre Olivier (SSRG@VT) LKP - System Calls March 23, 2017 19 / 24



Syscall execution: kernel space side likely/unlikely and kernel/user memory transfers

Syscall execution: kernel space side
likely/unlikely and kernel/user memory transfers (2)

I The user attribute
I include/linux/compiler.h:

1 #define __user __attribute__((noderef, address_space(1)))
2 #define __kernel __attribute__((address_space(0)))

I Used for static code security analysis (sparse)
I copy {to|from} user

1 static inline long copy_from_user(void *to, const void __user *from, unsigned long n);
2 static inline long copy_to_user(void __user *to, const void *from, unsigned long n);

I When a kernel function gets a pointer to some memory in user
space it needs to use:

I The kernel copies it into its memory area (copy from user)
I When the kernel wants to write in a user space buffer:

I It uses copy to user

I These functions perform checks for security and stability

Pierre Olivier (SSRG@VT) LKP - System Calls March 23, 2017 20 / 24



Implementing a new system call

Outline

1 System calls: general notions

2 Syscall invocation: user space side

3 Syscall execution: kernel space side

4 Implementing a new system call

Pierre Olivier (SSRG@VT) LKP - System Calls March 23, 2017 21 / 24



Implementing a new system call Basic steps

Implementing a new system call
Basic steps

1 Write your syscall function
1 In an existing file if it makes sense

I Is it related to time management ? → kernel/time/time.c

2 Or, if the implementation is large and self-contained: in a new file
I You will have to edit the kernel Makefiles to integrate it in the

compilation process
2 Add it to the syscall table and give it an identifier

I arch/x86/syscalls/syscall 64.tbl for Linux 4.0
3 Add the prototype in include/linux/syscalls.h:

1 asmlinkage long sys_gettimeofday(struct timeval __user *tv,
2 struct timezone __user *tz);

4 Recompile, reboot and run
I Touching the syscall table will trigger the entire kernel

compilation

Pierre Olivier (SSRG@VT) LKP - System Calls March 23, 2017 22 / 24



Implementing a new system call Editing the kernel Makefiles

Implementing a new system call
Editing the kernel Makefiles (2)

I Example: syscall implemented in linux sources in
my syscall/my syscall.c

1 my syscall/Makefile:
1 obj-y += my_syscall.o

2 Linux root Makefile:
1 # ...
2 core-y += kernel/ mm/ fs/ ipc/ security/ crypto/ block/ my_syscall/
3 # ...

Pierre Olivier (SSRG@VT) LKP - System Calls March 23, 2017 23 / 24



Implementing a new system call Editing the kernel Makefiles

Implementing a new system call
Do you really need it?

I Pros: Easy to implement and use, fast
I Cons:

I Needs an official syscall number
I Interface cannot change after implementation
I Must be registered for each architecture
I Probably too much work for small exchanges of information

I Alternative:
I Device or virtual file:

I User/kernel space communication through read, write, ioctl

Pierre Olivier (SSRG@VT) LKP - System Calls March 23, 2017 24 / 24


	System calls: general notions
	Syscall invocation: user space side
	C library

	Syscall execution: kernel space side
	User/kernel space transition
	Syscall implementation execution: example with gettimeofday
	likely/unlikely and kernel/user memory transfers

	Implementing a new system call
	Basic steps
	Editing the kernel Makefiles


