
Linux Kernel Programming
Version Control with Git

Pierre Olivier

Systems Software Research Group @ Virginia Tech

March 23, 2017

Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 1 / 32



I Source: https://xkcd.com/1296/

Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 2 / 32

https://xkcd.com/1296/


Outline

1 Version Control

2 Git: generalities

3 Basic usage

4 Branching

5 Going further

Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 3 / 32



Version Control

Outline

1 Version Control

2 Git: generalities

3 Basic usage

4 Branching

5 Going further

Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 4 / 32



Version Control Generalities and local VCS

Version Control
Generalities and local VCS

I Version Control Software:
I Track changes in a codebase

I Fast rollback to a previous state when something is broken
I Easy identification of changes (ex: patch generation)

I Different models:
1 Local VCS

I ex: GNU RCS

I Issue: several programmers

Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 5 / 32



Version Control Centralized VCS

Version Control
Centralized VCS

I Different models (continued)
2 Centralized VCS

I Ex: Subversion (SVN)
I Issue: server is a single point of failure

Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 6 / 32



Version Control Distributed VCS

Version Control
Distributed VCS

3 Distributed VCS
I Ex: Git

Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 7 / 32



Git: generalities

Outline

1 Version Control

2 Git: generalities

3 Basic usage

4 Branching

5 Going further

Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 8 / 32



Git: generalities Git popularity

Git: generalities
Git popularity

I http://bit.ly/2jE50N9

I Source: Stack Overflow
(http://stackoverflow.com/research/
developer-survey-2015#tech-sourcecontrol)

Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 9 / 32

http://bit.ly/2jE50N9
http://stackoverflow.com/research/developer-survey-2015#tech-sourcecontrol
http://stackoverflow.com/research/developer-survey-2015#tech-sourcecontrol


Git: generalities Git popularity

Git: generalities
Git popularity

I http://bit.ly/2jE50N9

I Source: Stack Overflow
(http://stackoverflow.com/research/
developer-survey-2015#tech-sourcecontrol)

Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 9 / 32

http://bit.ly/2jE50N9
http://stackoverflow.com/research/developer-survey-2015#tech-sourcecontrol
http://stackoverflow.com/research/developer-survey-2015#tech-sourcecontrol


Git: generalities Git popularity

Git: generalities

I Development started in 2005 by the kernel community:
I Replacing Bitkeeper that became non-free

I Fully distributed
I Each programmer gets a copy of the entire history
I Most of git operations happen in local

I Simple design, fast
I Faster than most of the competitors in most of VCS operations

(cloning a repository, applying patches, committing changes, etc.)
[3]

I Scalable
I Handles large codebases very well (ex: Linux)
I Allows numerous parallel branches to coexist

Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 10 / 32



Git: generalities Installing & configuring Git

Git: generalities
Installing & configuring Git

I Install from a Linux distribution repositories:
1 sudo apt-get install git # Ubuntu / Debian
2 sudo yum install git # Fedora / CentOS / RedHat

I Install from sources:
1 Got to https://www.kernel.org/pub/software/scm/git/

and grab the latest version git-a.b.c.tar.zx
2 Unpack the archive and cd to the directory

1 ./configure
2 make
3 sudo make install

I The configure script might indicate you potential missing libraries

I Minimal configuration:
1 git config --global user.name "John Doe"
2 git config --global user.email johndoe@example.com

Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 11 / 32

https://www.kernel.org/pub/software/scm/git/


Git: generalities Git: the three local states

Git: generalities
Git: the three local states

I Git keeps the history database (repository) and other metadata in
a .git folder

I Hidden folder located at the root of the project directory tree

I Adapted from [1]

Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 12 / 32



Basic usage

Outline

1 Version Control

2 Git: generalities

3 Basic usage

4 Branching

5 Going further

Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 13 / 32



Basic usage Cloning a repository from a server

Basic usage
Cloning a repository from a server

I Copying a remote repository on the local machine: cloning
I Needs a url identifying the remote repository

I Different protocols are supported. Examples:
I git://git.kernel.org/pub/scm/linux/kernel/git/

torvalds/linux.git
I https://git.kernel.org/pub/scm/linux/kernel/git/

torvalds/linux.git
I ssh://user@git.kernel.org:

/pub/scm/linux/kernel/git/torvalds/linux.git

I Contains info on protocol, remote server address, and repository
location on the server

I Usage:
1 git clone <url>

I More info: man git clone
I Valid for all other git commands referenced here

Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 14 / 32

git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
ssh://user@git.kernel.org:/pub/scm/linux/kernel/git/torvalds/linux.git
ssh://user@git.kernel.org:/pub/scm/linux/kernel/git/torvalds/linux.git


Basic usage Checking local copy status

Basic usage
Checking local copy status

I Status of the working copy is checked through git status

1 ls
2 Makefile my-lib.c my-lib.h my-program.c README
3
4 # Modification of my-lib.c and Makefile ...
5
6 git status
7 On branch master
8 Your branch is up-to-date with ’origin/master’.
9 Changes not staged for commit:

10 (use "git add <file>..." to update what will be committed)
11 (use "git checkout -- <file>..." to discard changes in working directory)
12
13 modified: Makefile
14 modified: my-lib.c
15
16 no changes added to commit (use "git add" and/or "git commit -a")

Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 15 / 32



Basic usage Preparing new or modified files for commit and committing

Basic usage
Preparing new or modified files for commit and committing

I Preparing new or modified files for commit is called staging and
done through git add

1 git add Makefile my-lib.c
2
3 git status
4 On branch master
5 Your branch is up-to-date with ’origin/

master’.
6 Changes to be committed:
7 (use "git reset HEAD <file>..." to

unstage)
8
9 modified: Makefile

10 modified: my-lib.c

1 touch new-file.txt
2 git add new-file.txt
3
4 On branch master
5 Your branch is up-to-date with ’origin/

master’.
6 Changes to be committed:
7 (use "git reset HEAD <file>..." to

unstage)
8
9 modified: Makefile

10 modified: my-lib.c
11 new file: new-file.txt

I The actual commit is done through git commit
I Need to enter a commit message, summary of the

changes
I After that the changes are actually recorded in the local history

database
Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 16 / 32



Basic usage To add or not to add

Basic usage
To add or not to add

I Waste of space and bandwidth
I Use the .gitignore file

Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 17 / 32



Basic usage Files: undoing things, renaming

Basic usage
Files: undoing things, renaming

I Remove a file from version
control (deletes the file!):

1 git rm <file>

I If the file has local
changes or is staged:

1 git rm -f <file>

I Remove file from staging
area:

1 git reset <file>

I Revert local changes
(before staging) and
rollback a file to the last
commit:

1 git checkout <file>

I Rename/move a file under
version control:

1 git mv <file>

I Automatically staged

Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 18 / 32



Basic usage States of a file

Basic usage
States of a file

Adapted from [2]
Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 19 / 32



Basic usage Log, rollback

Basic usage
Log, rollback

I git log displays a log of the commit messages ordered in time
1 commit 45834fb5e08f4e41d37016de54cbdf19872809dc
2 Author: Pierre Olivier <polivier@vt.edu>
3 Date: Wed Jan 11 19:37:52 2017 -0500
4
5 Modified even more stuff.
6
7 commit 747982b2bd5f31e1ee1b0997aabe7e0b116fcdf2
8 Author: Pierre Olivier <polivier@vt.edu>
9 Date: Wed Jan 11 19:09:42 2017 -0500

10
11 Modified some important stuff.
12
13 commit 7cdfd7cdee05e3306f56d62cd1efcd00f7d8fd58
14 Author: Pierre Olivier <polivier@vt.edu>
15 Date: Wed Jan 11 19:07:08 2017 -0500
16
17 1st commit: initialized some files.

I Display for each commit its unique identifier: hash
I Rollback to a previous commit: git checkout <hash>
I Back to the most recent commit: git checkout <branch>

Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 20 / 32



Basic usage Communicating with the server

Basic usage
Communicating with the server

I Propagate changes to the server: git push

1 git push

I Sends to the server all the local commits it does not currently
contain

I Update local history database from the server: git pull

1 git pull

I Retrieve commits from other users

Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 21 / 32



Basic usage Conflicts

Basic usage
Conflicts

I When the remote commits retrieved through git pull concern file A
and there are some non-pushed commits to file A in your local
history database:

I Git first tries to automatically merge the two sets of commits
according to some algorithm

I If this fails, (modified lines are the same or binary file): conflict
I Solving the conflict is needed before completing the pull

operation/committing/pushing
I Text file:

1 non-conflicting line
2 another non conflicting line
3 <<<<<<<< HEAD
4 line in local working copy
5 ========
6 line in remote copy
7 >>>>>>>> <remote commit id>

I To solve: edit the file, add
it then commit

Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 22 / 32



Branching

Outline

1 Version Control

2 Git: generalities

3 Basic usage

4 Branching

5 Going further

Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 23 / 32



Branching What is a branch?

Branching
What is a branch?

I Flow of consecutive
commits separated
from other flows
(other branches)

I Create branch using
git checkout -b
<branch name>

I Switch between
branches using git
checkout <branch
name>

Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 24 / 32



Branching Why branching?

Branching
Why branching?

Branching is useful in multiple cases:
I Several programmers working on the same codebase:

I Per-programmer branches → no conflicts
I Introducing a new feature or a bug fix

I Isolate the code related to the feature/bug fix
I Keeping the master branch clean

I master is the default branch checked out when cloning
I Development flows are separated into branches
I master is always functional and not in some work-in-progress state

Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 25 / 32



Branching Merging branches

Branching
Merging branches

I Merging branch A in B: taking all the
differences between

I applying all the commits of B to the
current state of A

I Conflicts might happen

Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 26 / 32



Branching Tags

Branching
Tags

I A tag is a snapshot at one specific commit
I Created through git tag <tag name>
I Used generally to indicate stable versions numbers
I git checkout <tag name>

I Need to branch to edit from there if needed

Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 27 / 32



Branching Diffs and patches

Branching
Diffs and patches

I git diff produces a textual comparison between:
I Modified files and the last commit: git diff
I Modified files and some specific commit: git diff <commit
hash>

I Branches (last commit), tags, specific commits: git diff
<branch/tag/hash> <branch/tag/hash>

I A patch is created by redirecting git diff output to a file:
1 git diff v2.0 > modif.patch

I To apply a patch on the source commit/branch/tag, put it at the
root of the working copy and:

1 patch -p1 < modif.patch
2 # or:
3 git apply modif.patch

Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 28 / 32



Going further

Outline

1 Version Control

2 Git: generalities

3 Basic usage

4 Branching

5 Going further

Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 29 / 32



Going further Misc. information

Going further
Misc. information

I Graphical interfaces:
I Github Desktop (Win/Mac), gitk (Linux)
I https://git-scm.com/download/gui/linux

I Conflicts on binary files:
1 git checkout --theirs path/to/conflicting/file
2 git checkout --ours path/to/conflicitng/file

I Working with several remotes servers:
I https://git-scm.com/book/en/v2/
Git-Basics-Working-with-Remotes

I Server providers:
I GitHub: https://github.com/
I Gitlab: https://about.gitlab.com/
I Plenty of others ...

I Running your own server:
I https:
//www.linux.com/learn/how-run-your-own-git-server

Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 30 / 32

https://git-scm.com/download/gui/linux
https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes
https://git-scm.com/book/en/v2/Git-Basics-Working-with-Remotes
https://github.com/
https://about.gitlab.com/
https://www.linux.com/learn/how-run-your-own-git-server
https://www.linux.com/learn/how-run-your-own-git-server


Going further Documentation

Going further
Documentation

I Free online:
I https://git-scm.com/
book/en/v2

I ISBN-13: 978-1484200773
I ISBN-10: 1484200772

Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 31 / 32

https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2


Bibliography

Bibliography I

[1] Git basics.
https://git-scm.com/book/en/v2/Getting-Started-Git-Basics.
Accessed: 2017-01-11.

[2] Git basics: Recording changes to the repository.
https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository.
Accessed: 2017-01-11.

[3] Git benchmarks.
https://git.wiki.kernel.org/index.php/GitBenchmarks.
Accessed: 2017-01-11.

Pierre Olivier (SSRG@VT) LKP - Git March 23, 2017 32 / 32

https://git-scm.com/book/en/v2/Getting-Started-Git-Basics
https://git-scm.com/book/en/v2/Git-Basics-Recording-Changes-to-the-Repository
https://git.wiki.kernel.org/index.php/GitBenchmarks

	Version Control
	Generalities and local VCS
	Centralized VCS
	Distributed VCS

	Git: generalities
	Git popularity
	Installing & configuring Git
	Git: the three local states

	Basic usage
	Cloning a repository from a server
	Checking local copy status
	Preparing new or modified files for commit and committing
	To add or not to add
	Files: undoing things, renaming
	States of a file
	Log, rollback
	Communicating with the server
	Conflicts

	Branching
	What is a branch?
	Why branching?
	Merging branches
	Tags
	Diffs and patches

	Going further
	Misc. information
	Documentation


