
Linux Kernel Programming
Kernel Data Structures

Pierre Olivier

Systems Software Research Group @ Virginia Tech

February 7, 2017

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 1 / 43

I Source: https://xkcd.com/399/

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 2 / 43

https://xkcd.com/399/

Outline

1 Linked lists

2 Queues

3 Maps

4 Binary trees

5 The right data structure for the right problem

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 3 / 43

Introduction

Introduction

I The kernel has efficient implementations of:
1 Lists (singly/doubly linked): include/linux/list.h
2 Queues: include/linux/kfifo.h
3 Maps: include/linux/idr.h
4 Binary trees (red-black trees): include/linux/rbtree.h

I Do not reinvent the wheel!

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 4 / 43

Linked lists

Outline

1 Linked lists

2 Queues

3 Maps

4 Binary trees

5 The right data structure for the right problem

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 5 / 43

Linked lists Singly linked list

Linked lists
Singly linked list

1 struct my_list_element
2 {
3 void *data;
4 struct my_list_element *next;
5 };

I void pointer to point on
generic data

I Can also contain data
directly for a non-generic
version

I Pointer to the next
element

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 6 / 43

Linked lists Doubly linked list

Linked lists
Doubly linked list

1 struct my_list_element
2 {
3 void *data;
4 struct my_list_element *prev;
5 struct my_list_element *next;
6 };

I Additional prev pointer
I Allows backward traversal

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 7 / 43

Linked lists Circular lists

Linked lists
Circular lists

I Linked lists are iterated sequentially
I Inappropriate when random (direct) access to a specific element

is needed
Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 8 / 43

Linked lists Linux implementation

Linked lists
Linux implementation: standard approach vs Linux

I Linux implements linked list a bit differently than the standard
approach

I Standard approach → add next/prev pointers to a data
structure:

1 struct car
2 {
3 unsigned int max_speed;
4 unsigned int drive_wheel_num;
5 double price_in_dollars;
6 struct car *prev; /* we add this ... */
7 struct car *next; /* ... and this */
8 };

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 9 / 43

Linked lists Linux implementation

Linked lists
Linux implementation: struct list head

1 struct list_head
2 {
3 struct list_head *next;
4 struct list_head *prev;
5 };

I Current implementation
was introduced in Linux 2.1

I struct list head as
the central data structure

I list head is embedded in the structure we want to link:

1 struct car
2 {
3 unsigned int max_speed;
4 unsigned int drive_wheel_num;
5 double price_in_dollars;
6 struct list_head list; /* we add this */
7 };

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 10 / 43

Linked lists Linux implementation

Linked lists
Linux implementation: struct list head (2)

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 11 / 43

Linked lists Linux implementation

Linked lists
Linux implementation: list entry

I The kernel provides a generic API to manipulates such lists
I ex: list add(struct list head *new, struct list head

*head)
I Manipulates struct list head objects

I How to get access to the containing data structure given a
struct list head?

I Use list entry

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 12 / 43

Linked lists Linux implementation

Linked lists
Linux implementation: list entry (2)

1 /* let’s assume we have a pointer car_list_ptr to a struct list_head embedded into a struct
2 * car data object */
3 struct car *amazing_car = list_entry(car_list_ptr, struct car, list)

1 #define list_entry(ptr, type, member) \
2 container_of(ptr, type, member)

1 #define container_of(ptr, type, member) ({ \
2 const typeof(((type *)0)->member) *__mptr = (ptr);
3 (type *)((char *)__mptr - offsetof(type,member));})

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 13 / 43

Linked lists The container of macro

Linked lists
The container of macro

1 #define container_of(ptr, type, member) ({ \
2 const typeof(((type *)0)->member) *__mptr = (ptr);
3 (type *)((char *)__mptr - offsetof(type,member));})

1 /* call to list_entry expands into: */
2 struct car *amazing_car = container_of(car_list_ptr, struct car, list);

1 /* next expansion: */
2 amazing_car = ({
3 const typeof(((struct car *)0)->list) *__mptr = car_list_ptr;
4 (struct car *)((char *)__mptr - offsetof(struct car, list));
5 });

1 /* last expansion: */
2 amazing_car = ({
3 const struct list_head *__mptr = car_list_ptr;
4 (struct car *)((char *)__mptr - 0x10);
5 });

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 14 / 43

Linked lists Defining a linked list

Linked lists
Defining a linked list

I Previous example:

1 struct car
2 {
3 unsigned int max_speed;
4 unsigned int drive_wheel_num;
5 double price_in_dollars;
6 struct list_head list;
7 };

I Static (compile-time)
definition:

1 struct car my_car =
2 {
3 .max_speed = 150,
4 .drive_wheel_num = 2,
5 price_in_dollars = 10000.0,
6 .list = LIST_HEAD_INIT()
7 }

I Dynamic (runtime) definition, most commonly used:
1 struct car *my_car =
2 kmalloc(sizeof(*my_car), GFP_KERNEL);
3 my_car->max_speed = 150;
4 my_car->drive_wheel_num = 2;
5 my_car->price_in_dollars = 10000.0;
6 INIT_LIST_HEAD(&my_car->list);

I Canonical pointer representing the list as a whole:
1 LIST_HEAD(my_car_list); /* my_car_list is a struct list_head */

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 15 / 43

Linked lists Adding/deleting a node to/from a list

Linked lists
Adding/deleting a node to/from a list

I list add
(struct list head *new, struct list head *head)
I Add the node right after the head node

I list add tail
(struct list head *new, struct list head *head)
I Add the node at the end of the list, i.e. before the head node

I list del(struct list head *entry)
I Remove the element from the list
I You still have to take care of the memory deallocation if needed

1 list_add(&my_car->list, &my_car_list);
2 list_add_tail(&my_car->list, &my_car_list);
3 list_del(&my_car->list);

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 16 / 43

Linked lists Moving/Splicing nodes

Linked lists
Moving/Splicing nodes

I list move
(struct list head *list, struct list head *head)

I list move tail
(struct list head *list, struct list head *head)
I Move a node from one list to another one

I list empty(struct list head *head)
I Returns nonzero if the list is empty

I list splice
(struct list head *list, struct list head *head)
I Insert the list pointed by list after the element head

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 17 / 43

Linked lists Iterating over a list

Linked lists
Iterating over a list

I list for each(), list for each entry()

1 /* Temporary variable needed to iterate: */
2 struct list_head p;
3 /* This will point on the actual data structures (struct car) during the iteration: */
4 struct car *current_car;
5
6 list_for_each(p, &my_car_list)
7 {
8 current_car = list_entry(p, struct car, list);
9 printk(KERN_INFO "Price: %lf\n", current_car->price_in_dollars);

10 }
11
12 /* Simpler: use list_for_each_entry */
13 list_for_each_entry(current_car, &my_car_list, list)
14 {
15 printk(KERN_INFO "Price: %lf\n", current_car->price_in_dollars);
16 }

I list for each entry reverse()
I Iterate backwards

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 18 / 43

Linked lists Removing while iterating

Linked lists
Removing while iterating

1 /* This will point on the actual data structures (struct car) during the iteration: */
2 struct car *current_car, *next;
3
4 list_for_each_entry_safe(current_car, next, my_car_list, list)
5 {
6 printk(KERN_INFO "Price: %lf\n", current_car->price_in_dollars);
7 list_del(current_car->list);
8 kfree(current_car); /* if this was dynamically allocated through kmalloc */
9 }

I For each iteration, next points to the next node
I Can safely remove the current node
I Otherwise: → use-after-free bug

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 19 / 43

Linked lists Linked lists: where are they used in the kernel?

Linked lists
Linked lists: where are they used in the kernel?

I Kernel code makes extensive use of linked lists:
I Linking threads that share a common PID;
I Linking the superblocks of all partitions sharing a common file

system type;
I Linking processes in a CPU run queue
I etc.

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 20 / 43

Queues

Outline

1 Linked lists

2 Queues

3 Maps

4 Binary trees

5 The right data structure for the right problem

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 21 / 43

Queues Definition

Queues
Definition

I Producer/consumer programming model
I FIFO: First-In-First-Out
I Implemented in Linux through struct kfifo

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 22 / 43

Queues Queues: creation

Queues
Queues: creation

1 struct kfifo my_queue;
2 char *buffer;
3 int ret;
4
5 /* Version 1: dynamic allocation + initialization of a 1024 bytes sized queue */
6 ret = kfifo_alloc(&my_queue, 1024, GFP_KERNEL);
7 if(ret)
8 return ret; /* can fail! return error */
9

10 /* Version 2: initialization of a (dynamically) pre-allocated buffer to be used as a queue */
11 buffer = kmalloc(1024, GFP_KERNEL);
12 ret = kfifo_init(&my_queue, buffer, 1024);
13 if(ret)
14 return ret;
15
16 /* Version 3: static declaration */
17 DECLARE_KFIFO(another_queue, 1024); /* type of another queue is struct kfifo */
18 INIT_KFIFO(another_queue);

I Size should be a power of 2

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 23 / 43

Queues Enqueueing/dequeueing

Queues
Enqueueing/dequeueing

I Prototypes:

1 /* (these are actually macros in recent kernel versions) */
2 unsigned int kfifo_in(struct kfifo *fifo, const void *from, unsigned int len);
3 unsigned int kfifo_out(struct kfifo *fifo, void *to, unsigned int len);
4 unsigned int kfifo_out_peek(struct kfifo *fifo, void *to, unsigned int len);

1 struct car
2 {
3 unsigned int max_speed;
4 unsigned int drive_wheel_num;
5 double price_in_dollars;
6 };

I Enqueueing:

1 unsigned int ret;
2 struct car car_to_add = {100, 2, 10000.0};
3
4 ret = kfifo_in(&fifo, &car_to_add,
5 sizeof(struct car));
6 if(ret != sizeof(struct car))
7 /* Not enough space left in the queue */

I Dequeueing:
1 struct car amazing_car;
2 unsigned int ret = kfifo_out(&fifo, &amazing_car, sizeof(struct car));

I Use kfifo out peek to access the head of the queue
without removal

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 24 / 43

Queues Queue size/reset/destroy

Queues
Queue size/reset/destroy

I Information on queue size - prototypes:

1 /* Let’s assume we have struct kfifo my_kfifo */
2 unsigned int buffer_total_size_in_bytes = kfifo_size(&my_kfifo);
3 unsigned int bytes_used = kfifo_len(&my_kfifo);
4 unsigned int bytes_free = kfifo_avail(&my_kfifo);
5 int empty = kfifo_is_empty(&my_kfifo);
6 int full = kfifo_is_full(&my_kfifo);

I Reset a queue (removes all content):

1 kfifo_reset(&my_kfifo); /* returns void */

I Free a queue previously allocated through kfifo alloc()

1 kfifo_free(&my_kfifo); /* returns void */

I Sample of kernel queues usage:
I In linux sources, samples/kfifo

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 25 / 43

Queues Queues usage in the kernel

Queues
Queues usage in the kernel

I List of free blocks for the SmartMedia flash driver
I Used in the message queue driver for TI OMAP processors to

buffer messages
I etc.

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 26 / 43

Maps

Outline

1 Linked lists

2 Queues

3 Maps

4 Binary trees

5 The right data structure for the right problem

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 27 / 43

Maps Definition & initialization

Maps
Definition & initialization

I A map maps keys to values, supporting 3 main operations:
I add(key, value)
I remove(key)
I value = lookup(key)

I Linux implementation indexes content using a binary search tree
I Keys must support the operation <=

I Linux does not implement a general purpose map
I The implementation named idr,

maps integers (keys) to pointers (values)
I These integers are named Unique Identification Numbers (UIDs)

I Initialization:

1 /* Statically */
2 struct idr my_map;
3 idr_init(&my_map);

1 /* Dynamically */
2 struct idr *my_map_ptr = kmalloc(sizeof(

struct idr), GFP_KERNEL);
3 idr_init(my_map_ptr);

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 28 / 43

Maps New UID allocation

Maps
New UID allocation

I 3-steps process
I Prototypes:

1 /* 1. Pre-allocate the memory for the UID allocation request */
2 void idr_preload(gfp_t gfp_mask);
3 /* 2. Actual allocation request */
4 int idr_alloc(struct idr *idp, void *ptr, int start, int end, gfp_t gfp_mask);
5 /* 3. idr_preload disables preemption, needs to re-enable it: */
6 void idr_preload_end(void);

I Note that the interface to add a new UID has changed since the
textbook publication

I Simplified, removed the need for looping
I https://lwn.net/Articles/536293/

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 29 / 43

https://lwn.net/Articles/536293/

Maps Insertion: full example

Maps
Insertion: full example

1 int id;
2
3 idr_preload(GFP_KERNEL);
4 id = idr_alloc(&the_idr, &some_data, 10, 550, GFP_KERNEL);
5 idr_preload_end();
6 if(id == -ENOSPC)
7 /* error, no id available in the requested range */
8 else if(id == -ENOMEM)
9 /* error, could not allocate memory */

I UID range constraints provide more control on allocated UIDs
I Ex: loop device driver indexes a loop device partitions based on

their minor number

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 30 / 43

Maps UID lookup/removal, map destruction

Maps
UID lookup/removal, map destruction

I Prototypes:
1 void *idr_find(struct idr *idp, int id);
2 void idr_remove(struct idr *ipd, int id);
3 void idr_destroy(struct idr *idp);

I UID lookup:
1 struct car *my_car = idr_find(&my_map, id); /* returns NULL on error */
2 if(!my_car)
3 return -EINVAL; /* not found */

I UID removal:
1 idr_remove(&my_map, id);

I Map destruction:
1 idr_destroy(&my_map);

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 31 / 43

Maps Maps usage in the kernel

Maps
Maps usage in the kernel

I Indexing loop devices
I (File acting like a virtual block device (ex: disk images, ISOs, etc.))

I Index permission data structures for IPCs in a namespace
I (OS level virtualization)

I Index Performance Monitoring Unit events
I etc.

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 32 / 43

Binary trees

Outline

1 Linked lists

2 Queues

3 Maps

4 Binary trees

5 The right data structure for the right problem

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 33 / 43

Binary trees Definition

Binary trees
Definition

I Binary Tree
I Nodes have zero, one or

two children
I Root has 0 parent, other

nodes have one

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 34 / 43

Binary trees Definition

Binary trees
Definition (2)

I Binary Search Tree
I Ordered:

I Left children < parent
I Right children > parent
I Search and in-order

traversal are efficient

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 35 / 43

Binary trees Definition

Binary trees
Definition (3)

I Balanced Binary Search
Tree

I Depth of all leaves differs
by at most 1

I Puts a boundary on the
worst case search
operation

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 36 / 43

Binary trees Definition

Binary trees
Definition (4)

I Linux implements
Red-Black Trees

I Nodes: red or black
I Leaves: black, no data
I Non-leaves: two children
I Red nodes have two black

children

I Path from one node to one of its leaves has same amount of black
nodes as the shortest path to any of its other leaves

I Properties are maintained during tree modifications:
I Red-black trees are self-balanced

I Try to stay (semi-)balanced with modifications
I Efficient insert operations

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 37 / 43

Binary trees Tree creation and search

Binary trees
Tree creation and search

I Creation:
1 struct rb_root my_tree_root = RB_ROOT;

I Search routing must be implemented by the programmer:
1 static struct zswap_entry *zswap_rb_search(struct

rb_root *root, pgoff_t offset)
2 {
3 struct rb_node *node = root->rb_node;
4 struct zswap_entry *entry;
5
6 while (node) {
7 entry = rb_entry(node, struct zswap_entry,

rbnode);
8 if (entry->offset > offset)
9 node = node->rb_left;

10 else if (entry->offset < offset)
11 node = node->rb_right;
12 else
13 return entry;
14 }
15 return NULL;
16 }

1 struct zswap_entry {
2 struct rb_node rbnode;
3 pgoff_t offset;
4 int refcount;
5 unsigned int length;
6 struct zswap_pool *pool;
7 unsigned long handle;
8 };

I Use rb entry to get the data structure from the
corresponding indexing node

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 38 / 43

Binary trees Insertion/deletion

Binary trees
Insertion/deletion

1 static int zswap_rb_insert(struct rb_root *root, struct zswap_entry *entry,
2 struct zswap_entry **dupentry)
3 {
4 struct rb_node **link = &root->rb_node, *parent = NULL;
5 struct zswap_entry *myentry;
6
7 while (*link) {
8 parent = *link;
9 myentry = rb_entry(parent, struct zswap_entry, rbnode);

10 if (myentry->offset > entry->offset)
11 link = &(*link)->rb_left;
12 else if (myentry->offset < entry->offset)
13 link = &(*link)->rb_right;
14 else {
15 *dupentry = myentry;
16 return -EEXIST;
17 }
18 }
19 rb_link_node(&entry->rbnode, parent, link);
20 rb_insert_color(&entry->rbnode, root);
21 return 0;
22 }

I Deletion:
I rb erase(struct rb node *node, struct rb root

*root)

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 39 / 43

Binary trees Rbtrees: where are they used in the kernel?

Binary trees
Rbtrees: where are they used in the kernel?

I Rbtrees usage in the kernel:
I Processes runqueues for the CFS (default) Linux scheduler
I Indexing file (inode) fragments for the CEPH filesystem
I Indexing memory areas in a process address space
I etc.

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 40 / 43

The right data structure for the right problem

Outline

1 Linked lists

2 Queues

3 Maps

4 Binary trees

5 The right data structure for the right problem

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 41 / 43

The right data structure for the right problem

The right data structure for the right problem

Linked lists: I Sequential iteration over all data is needed
I There is an unknown number of elements

Queues: I Useful with producer/consumer pattern
I When it’s OK to work with a fixed size buffer

Maps: I Need to map a unique integer to a pointer

Red-black trees: I Large amount of data, efficient search

I Other data structures in the kernel:
I Radix trees [2]
I Bitmaps [1]
I etc.

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 42 / 43

Bibliography

Bibliography I

[1] Bit arrays and bit operations in the linux kernel.
https://0xax.gitbooks.io/linux-insides/content/DataStructures/bitmap.html.
Accessed: 2017-02-07.

[2] Lwn - trees i: Radix trees.
https://lwn.net/Articles/175432/.
Accessed: 2017-02-07.

Pierre Olivier (SSRG@VT) LKP - Data Structures February 7, 2017 43 / 43

https://0xax.gitbooks.io/linux-insides/content/DataStructures/bitmap.html
https://lwn.net/Articles/175432/

	Linked lists
	Singly linked list
	Doubly linked list
	Circular lists
	Linux implementation
	The container_of macro
	Defining a linked list
	Adding/deleting a node to/from a list
	Moving/Splicing nodes
	Iterating over a list
	Removing while iterating
	Linked lists: where are they used in the kernel?

	Queues
	Definition
	Queues: creation
	Enqueueing/dequeueing
	Queue size/reset/destroy
	Queues usage in the kernel

	Maps
	Definition & initialization
	New UID allocation
	Insertion: full example
	UID lookup/removal, map destruction
	Maps usage in the kernel

	Binary trees
	Definition
	Tree creation and search
	Insertion/deletion
	Rbtrees: where are they used in the kernel?

	The right data structure for the right problem

