
Linux Kernel Programming
Process Management

Pierre Olivier

Systems Software Research Group @ Virginia Tech

February 9, 2017

Pierre Olivier (SSRG@VT) LKP - Process Management February 9, 2017 1 / 27



Outline

1 Process

2 The process descriptor: task struct

3 Process creation

4 Threads

5 Process termination

Pierre Olivier (SSRG@VT) LKP - Process Management February 9, 2017 2 / 27



Process

Outline

1 Process

2 The process descriptor: task struct

3 Process creation

4 Threads

5 Process termination

Pierre Olivier (SSRG@VT) LKP - Process Management February 9, 2017 3 / 27



Process Definition

Process
Definition

I Refers to a program currently
executing in the system

I CPU registers
I Location and state of

memory segments (text,
data, stack, etc.)

I Kernel resources (open files,
pending signals, etc.)

I Threads
I Managed on a per-program

way:
I Virtualization of the

processor and the memory
I Let’s check an example with
strace (-f)

Pierre Olivier (SSRG@VT) LKP - Process Management February 9, 2017 4 / 27



Process Sample program

Process
Sample program

1 /* process.c */
2
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <unistd.h>
6 #include <sys/types.h>
7 #include <sys/wait.h>
8
9 int main(void)

10 {
11 pid_t pid = -42;
12 int wstatus = -42;
13 int ret = -1;
14
15 pid = fork();
16 switch(pid)
17 {
18 case -1:
19 perror("fork");
20 return EXIT_FAILURE;
21
22 case 0:
23 sleep(1);
24 printf("Noooooooo!\n");
25 exit(0);

26 default:
27 printf("I am your father!\n");
28 break;
29 }
30
31 ret = waitpid(pid, &wstatus, 0);
32 if(ret == -1)
33 {
34 perror("waitpid");
35 return EXIT_FAILURE;
36 }
37 printf("Child exit status: %d\n",

WEXITSTATUS(wstatus));
38
39 return EXIT_SUCCESS;
40 }

1 gcc -Wall -Werror process.c -o process
2 ./process
3 strace -f ./process > /dev/null

Pierre Olivier (SSRG@VT) LKP - Process Management February 9, 2017 5 / 27



Process Sample program

Process
fork() & exec() usage

I Tutorial on fork() usage:
I http://www.csl.mtu.edu/cs4411.ck/www/NOTES/
process/fork/create.html

I Combining fork() and exec():
I https://ece.uwaterloo.ca/˜dwharder/icsrts/
Tutorials/fork_exec/

Pierre Olivier (SSRG@VT) LKP - Process Management February 9, 2017 6 / 27

http://www.csl.mtu.edu/cs4411.ck/www/NOTES/process/fork/create.html
http://www.csl.mtu.edu/cs4411.ck/www/NOTES/process/fork/create.html
https://ece.uwaterloo.ca/~dwharder/icsrts/Tutorials/fork_exec/
https://ece.uwaterloo.ca/~dwharder/icsrts/Tutorials/fork_exec/


The process descriptor: task struct

Outline

1 Process

2 The process descriptor: task struct

3 Process creation

4 Threads

5 Process termination

Pierre Olivier (SSRG@VT) LKP - Process Management February 9, 2017 7 / 27



The process descriptor: task struct Presentation

The process descriptor: task struct
Presentation

I List of processes implemented as a linked list of task struct

1 struct tastk_struct {
2 volatile long state;
3 void *stack;
4 /* ... */
5 int prio;
6 /* ... */
7 cpumask_t cpus_allowed;
8 /* ... */
9 struct list_head tasks;

10 /* ... */
11 struct mm_struct *mm;
12 /* ... */
13 pid_t pid;
14 /* ... */
15 struct task_struct *parent;
16 struct list_head children;
17 struct list_head sibling;
18 /* ... */
19 }

I Total size (Linux 4.8): 6976 bytes
I Full structure definition in linux/sched.h

Pierre Olivier (SSRG@VT) LKP - Process Management February 9, 2017 8 / 27



The process descriptor: task struct Allocation & storage

The process descriptor: task struct
Allocation & storage

I Prior to 2.6: task struct allocated at the
end of the kernel stack of each process

I Allows to retrieve it without storing its
location in a register

I Now dynamically allocated (heap) through
the slab allocator

I A struct thread info living at the
bottom of the stack

1 struct thread_info {
2 struct task_struct *task;
3 __u32 flags;
4 __u32 status;
5 __u32 cpu;
6 };

I Moved off the stack in 4.9 [2] because of potential exploit [1] when
overflowing the kernel stack

Pierre Olivier (SSRG@VT) LKP - Process Management February 9, 2017 9 / 27



The process descriptor: task struct Allocation & storage

The process descriptor: task struct
Allocation & storage (2)

I Process Identifier (PID): pid t (int)
I Max: 32768, can be increased to 4 millions
I Wraps around when maximum reached

I Quick access to task struct of the task currently running on a
core: current

I arch/x86/include/asm/current.h:
1
2 DECLARE_PER_CPU(struct task_struct *, current_task);
3
4 static __always_inline struct task_struct *get_current(void)
5 {
6 return this_cpu_read_stable(current_task);
7 }
8
9 #define current get_current()

Pierre Olivier (SSRG@VT) LKP - Process Management February 9, 2017 10 / 27



The process descriptor: task struct Process states

The process descriptor: task struct
Process states

I state field of the task struct
I TASK RUNNING:

I Process is runnable (running or in a CPU run queue)
I In user or kernel space

I TASK INTERRUPTIBLE:
I Process is sleeping waiting for some condition
I Switched to TASK RUNNING on condition true or signal received

I TASK UNINTERRUPTIBLE:
I Same as TASK INTERRUPTIBLE but does not wake up on signal

I TASK TRACED: Traced by another process (ex: debugger)
I TASK STOPPED: Not running nor waiting, result of the reception of

some signals to pause the process

Pierre Olivier (SSRG@VT) LKP - Process Management February 9, 2017 11 / 27



The process descriptor: task struct Process states

The process descriptor: task struct
Process states: flowchart

Pierre Olivier (SSRG@VT) LKP - Process Management February 9, 2017 12 / 27



The process descriptor: task struct Process context and family tree

The process descriptor: task struct
Process context and family tree

I The kernel can executes in process vs interrupt context
I current is meaningful only when the kernel executes in process

context
I I.e. following a system call or an exception

I Process hierarchy
I Root: init, PID 1

I Launched by the kernel as the last step of the boot process
I fork-based process creation:

I Each process has a parent: parent pointer in the task struct
I Processes may have children: children field (list head)
I Processes may have siblings: siblings field
I List of all tasks: tasks field

- Easy manipulation through next task(t) and
for each process(t)

I Let’s check it out with the pstree command

Pierre Olivier (SSRG@VT) LKP - Process Management February 9, 2017 13 / 27



Process creation

Outline

1 Process

2 The process descriptor: task struct

3 Process creation

4 Threads

5 Process termination

Pierre Olivier (SSRG@VT) LKP - Process Management February 9, 2017 14 / 27



Process creation Presentation, Copy-On-Write

Process creation
Presentation, Copy-On-Write

I Linux does not implements creating a tasks from
nothing (spawn)

I fork() & exec()
I fork() creates a child, copy of the parent process

I Only PID, PPID and some resources/stats differ
I exec() loads into a process address space a new

executable
I On fork(), Linux duplicates the parent page

tables and creates a new process descriptor
I It’s fast, as the address space is not copied

I Page table access bits: read-only
I Copy-On-Write (COW): memory pages are copied

only when they are referenced for write operations

Pierre Olivier (SSRG@VT) LKP - Process Management February 9, 2017 15 / 27



Process creation Forking: fork() and vfork()

Process creation
Forking: fork() and vfork()

I fork() is implemented by the clone() system call

1 sys clone() calls do fork(), which calls copy process()
and starts the new task

2 copy process():
1 Calls dup task struct()

I Duplicates kernel stack, task struct and thread info
2 Checks that we do not overflow the processes number limit
3 Small amount of values are modified in the task struct
4 Calls sched fork() to set the child state set to TASK NEW
5 Copies parent info: files, signal handlers, etc.
6 Gets a new PID through alloc pid()
7 Returns a pointer to the created child task struct

3 Finally, do fork() calls wake up new task()
I State becomes TASK RUNNING

I vfork(): alternative without copy of the address space
Pierre Olivier (SSRG@VT) LKP - Process Management February 9, 2017 16 / 27



Threads

Outline

1 Process

2 The process descriptor: task struct

3 Process creation

4 Threads

5 Process termination

Pierre Olivier (SSRG@VT) LKP - Process Management February 9, 2017 17 / 27



Threads Presentation

Threads
Presentation

I Theory:

I Threads are concurrent flows of
execution belonging to the same
program sharing the same address
space

I In Linux there is no concept of a
thread

I No scheduling particularity
I A thread is just another process

sharing some information with other
processes

I Each thread has its own
task struct

I Created through clone() with
specific flags indicating
sharing

Pierre Olivier (SSRG@VT) LKP - Process Management February 9, 2017 18 / 27



Threads Kernel threads

Threads
Kernel threads

I To perform background operations in the kernel: kernel threads
I Very similar to user space threads

I They are schedulable entities (like regular processes)
I However they do not have their own address space

I mm in task struct is NULL
I Used for several tasks:

I Work queues (kworker)
I Load balancing between CPU scheduling runqueues (migration)
I etc.
I List of all them with ps --ppid 2

Pierre Olivier (SSRG@VT) LKP - Process Management February 9, 2017 19 / 27



Threads Kernel threads

Threads
Kernel threads: creation

I Kernel threads are all forked from the kthread kernel thread
(PID 2), using clone()

I To create a kernel thread, use kthread create()
I include/linux/kthread.h:

1 #define kthread_create(threadfn, data, namefmt, arg...) \
2 kthread_create_on_node(threadfn, data, NUMA_NO_NODE, namefmt, ##arg)

1 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
2 void *data,
3 int node,
4 const char namefmt[], ...);

I When created through kthread create(), the thread is not in a
runnable state

I Need to call wake up process():
1 int wake_up_process(struct task_struct *p);

I Or use kthread run()

Pierre Olivier (SSRG@VT) LKP - Process Management February 9, 2017 20 / 27



Threads Kernel threads

Threads
Kernel threads: creation (2)

I kthread run():
1 #define kthread_run(threadfn, data, namefmt, ...) \
2 ({ \
3 struct task_struct *__k \
4 = kthread_create(threadfn, data, namefmt, ## __VA_ARGS__); \
5 if (!IS_ERR(__k)) \
6 wake_up_process(__k); \
7 __k; \
8 })

I Thread termination:
I Thread runs until it calls do exit():

1 void do_exit(long error_code) __noreturn;

I Or until another part of the kernel calls kthread stop():
1 int kthread_stop(struct task_struct *k);

Pierre Olivier (SSRG@VT) LKP - Process Management February 9, 2017 21 / 27



Process termination

Outline

1 Process

2 The process descriptor: task struct

3 Process creation

4 Threads

5 Process termination

Pierre Olivier (SSRG@VT) LKP - Process Management February 9, 2017 22 / 27



Process termination Termination steps: do exit()

Process termination
Termination steps: do exit()

I Termination on invoking the exit() system call
I Can be implicitly inserted by the compiler on return from main
I sys exit() calls do exit()

I do exit() (kernel/exit.c):
1 Calls exit signals() which set the PF EXITING flag in the

task struct
2 Set the exit code in the exit code field of the task struct

I To be retrieved by the parent
3 Calls exit mm() to release the mm struct for the task

I If it is not shared with any other process, it is destroyed
4 Calls exit sem(): process dequeued from potential semaphores

queues
5 Calls exit fs() and exit files() to update accounting

information
I Potential data structures that are not used anymore are freed

Pierre Olivier (SSRG@VT) LKP - Process Management February 9, 2017 23 / 27



Process termination Termination steps: do exit()

Process termination
Termination steps: do exit() (2)

I do exit() (continued):
6 Calls exit notify()

I Sends signals to parent
I Reparent potential children
I Set the exit state of the task struct to EXIT ZOMBIE

7 Calls do task dead()
I Sets the state to TASK DEAD
I Calls schedule() and never returns

I At that point, what is left is the task struct, thread info and
kernel stack

I To provide information to the parent
I Parent notifies the kernel when everything can be freed

Pierre Olivier (SSRG@VT) LKP - Process Management February 9, 2017 24 / 27



Process termination task struct cleanup

Process termination
task struct cleanup

I Separated from the process of exiting because of the need to
pass exit information to the parent

I task struct must survive a little bit before being deallocated
I Until the parent grab the exit information through wait4()

I Cleanup implemented in release task() called from the
wait4() implementation

I Remove the task from the task list
I Release and free remaining resources

Pierre Olivier (SSRG@VT) LKP - Process Management February 9, 2017 25 / 27



Process termination Parentless tasks

Process termination
Parentless tasks

I A parent exits before its child
I Child must be reparented

I To another process in the current thread group ...
I ... or init if that fails

I exit notify() calls forget original parent(), that calls
find new reaper()

I Returns the task struct of another task in the thread group if it
exists, otherwise the one from init

I Then, all the children of the currently dying task are reparented to
the reaper

Pierre Olivier (SSRG@VT) LKP - Process Management February 9, 2017 26 / 27



Bibliography

Bibliography I

[1] Exploiting stack overflow in the linux kernel.
https://jon.oberheide.org/blog/2010/11/29/exploiting-stack-overflows-in-the-linux-kernel/.
Accessed: 2017-01-23.

[2] Security things in linux v4.9.
https://outflux.net/blog/archives/2016/12/12/security-things-in-linux-v4-9/.
Accessed: 2017-01-23.

Pierre Olivier (SSRG@VT) LKP - Process Management February 9, 2017 27 / 27

https://jon.oberheide.org/blog/2010/11/29/exploiting-stack-overflows-in-the-linux-kernel/
https://outflux.net/blog/archives/2016/12/12/security-things-in-linux-v4-9/

	Process
	Definition
	Sample program

	The process descriptor: task_struct
	Presentation
	Allocation & storage
	Process states
	Process context and family tree

	Process creation
	Presentation, Copy-On-Write
	Forking: fork() and vfork()

	Threads
	Presentation
	Kernel threads

	Process termination
	Termination steps: do_exit()
	task_struct cleanup
	Parentless tasks


