
Linux Kernel Programming
Process Scheduling

Pierre Olivier

Systems Software Research Group @ Virginia Tech

February 21, 2017

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 1 / 51

Outline

1 General information

2 Linux Completely Fair Scheduler

3 CFS implementation

4 Preemption and context switching

5 Real-time scheduling policies

6 Scheduling-related syscalls

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 2 / 51

General information

Outline

1 General information

2 Linux Completely Fair Scheduler

3 CFS implementation

4 Preemption and context switching

5 Real-time scheduling policies

6 Scheduling-related syscalls

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 3 / 51

General information Scheduling

General information
Scheduling

I Scheduler: OS entity that decide which process should run,
when, and for how long

I Multiplex processes in time on the processor: enables
multitasking

I Gives the user the illusion that processes are executing at the same
time

I Scheduler is responsible for making the best use of the resource
that is the CPU time

I Basic principle:
I When in the system there are more ready-to-run processes than

the number of cores
I The scheduler decides which process should run

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 4 / 51

General information Multitasking

General information
Multitasking

I Single core: gives the illusion that multiple processes are running
concurrently

I Multi-cores: enable true parallelism
I 2 types of multitasking OS:

I Cooperative multitasking
I A process does not stop running until it decides to do so (yield the

CPU)
I The operating system cannot enforce fair scheduling

- For example in the case of a process that never yields
I Preemptive multitasking

I The OS can interrupt the execution of a process: preemption
I Generally after the process expires its timeslice
I And/or based on tasks priorities

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 5 / 51

General information A bit of Linux scheduler history

General information
A bit of Linux scheduler history

I From v1.0 to v2.4: simple implementation
I But it did not scale to numerous processes and processors

I V2.5 introduced the O(1) scheduler
I Constant time scheduling decisions

I Scalability and execution time determinism
I More info in [5]
I Issues with latency-sensitive applications (Desktop computers)

I O(1) scheduler was replaced in 2.6.23 by what is still now the
standard Linux scheduler:

I Completely Fair Scheduler (CFS)
I Evolution of the Rotating Staircase Deadline scheduler [2, 3]

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 6 / 51

General information Scheduling policy

General information
Scheduling policy - I/O vs compute-bound tasks

I Scheduling policy are the set of rules determining the choices
made by a given model of scheduler

I I/O-bound processes:
I Spend most of their time waiting for I/O: disk, network, but also

keyboard, mouse, etc.
I Filesystem, network intensive, GUI applications, etc.
I Response time is important

I Should run often and for a small time frame
I Compute-bound processes:

I Heavy use of the CPU
I SSH key generation, scientific computations, etc.
I Caches stay hot when they run for a long time

I Should not run often, but for a long time

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 7 / 51

General information Scheduling policy

General information
Scheduling policy - Priority

I Priority
I Order process according to their ”importance” from the scheduler

standpoint
I A process with a higher priority will execute before a process with a

lower one
I Linux has 2 priority ranges:

I Nice value: ranges from -20 to +19, default is 0
I High values of nice means lower priority
I List process and their nice values with ps ax -o pid,ni,cmd

I Real-time priority: range configurable (default 0 to 99)
I Higher values mean higher priority
I For processes labeled real-time
I Real-time processes always executes before standard (nice)

processes
I List processes and their real-time priority using

ps ax -o pid,rtprio,cmd

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 8 / 51

General information Scheduling policy

General information
Scheduling policy - Priority (2)

I User space to kernel priorities mapping:

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 9 / 51

General information Scheduling policy

General information
Scheduling policy - Timeslice

I Timeslice (quantum):
I How much time a process should execute before being preempted
I Defining the default timeslice in an absolute way is tricky:

I Too long → bad interactive performance
I Too short → high context switching overhead

I Linux CFS does not use an absolute timeslice
I The timeslice a process receives is function of the load of the

system
I it is a proportion of the CPU

I In addition, that timeslice is weighted by the process priority
I When a process P becomes runnable:

I P will preempt the currently running process C is P consumed a
smaller proportion of the CPU than C

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 10 / 51

General information Scheduling policy

General information
Scheduling policy - Policy application example

I 2 tasks in the system:
I Text editor: I/O-bound, latency sensitive (interactive)
I Video encoder: CPU-bound, background job

I Text editor:
I A. Needs a large amount of CPU time

I Does not need to run for long, but needs to have CPU time available
whenever it needs to run

I B. When ready to run, needs to preempt the video encoder
I A + B = good interactive performance

I On a classical UNIX system, needs to set a correct combination of
priority and timeslice

I Different with Linux: the OS guarantee the text editor a specific
proportion of the CPU time

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 11 / 51

General information Scheduling policy

General information
Scheduling policy - Policy application example (2)

I Imagine only the two processes are present in the system and run
at the same priority

I Linux gives 50% of CPU time to each
I Considering an absolute timeframe:

I Text editor does not use fully its 50% as it often blocks waiting
for I/O

I Keyboard key pressed
I CFS keeps track of the actual CPU time used by each program
I When the text editor wakes up:

I CFS sees that it actually used less CPU time than the video
encoder

I Text editor preempts the video encoder

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 12 / 51

General information Scheduling policy

General information
Scheduling policy - Policy application example (3)

I Good interactive performance
I Good background, CPU-bound performance

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 13 / 51

Linux Completely Fair Scheduler

Outline

1 General information

2 Linux Completely Fair Scheduler

3 CFS implementation

4 Preemption and context switching

5 Real-time scheduling policies

6 Scheduling-related syscalls

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 14 / 51

Linux Completely Fair Scheduler Scheduling classes

Linux Completely Fair Scheduler
Scheduling classes

I CPU classes: coexisting CPU algorithms
I Each task belongs to a class

I CFS: SCHED OTHER, implemented in kernel/sched/fair.c
I Real-time classes: SCHED RR, SCHED FIFO, SCHED DEADLINE

I For predictable schedule
I sched class data structure:

1 struct sched_class {
2 void (*enqueue_task) (/* ... */);
3 void (*dequeue_task) (/* ... */);
4 void (*yield_task) (/* ... */);
5 void (*check_preempt_curr) (/* ... */);
6 struct task_struct * (*pick_next_task) (/* ... */);
7 void (*set_cur_task) (/* ...*/);
8 void (*task_tick) (/* ... */);
9 /* ... */

10 }

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 15 / 51

Linux Completely Fair Scheduler sched class hooks

Linux Completely Fair Scheduler
sched class hooks

I Functions descriptions:
I enqueue task(...)

I Called when a task enters a runnable state
I dequeue task(...)

I Called when a task becomes unrunnable
I yield task(...)

I Yield the processor (dequeue then enqueue back immediatly)
I check preempt curr(...)

I Checks if a task that entered the runnable state should preempt the
currently running task

I pick next task(...)
I Chooses the next task to run

I set curr task(...)
I Called when the currentluy running task changes its scheduling class

or task group to the related scheduler
I task tick(...)

I Called regularly (default: 10 ms) from the system timer tick
handler, might lead to context switch

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 16 / 51

Linux Completely Fair Scheduler Unix scheduling

Linux Completely Fair Scheduler
Unix scheduling

I Classical UNIX systems map priorities (nice values) to absolute
timeslices

I Leads to several issues:
I What is the absolute timeslice that should be mapped to a

given nice value?
I Sub-optimal switching behavior for low priority processes (small

timeslices)
I Relative nice values and their mapping to timeslices

I Nicing down a process by one can have very different effects
according to the tasks priorities

I Timeslice must be some integer multiple of the timer tick
I Minimum timeslice and difference between two consecutive

timeslices are bounded by the timer tick frequency

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 17 / 51

Linux Completely Fair Scheduler Fair scheduling

Linux Completely Fair Scheduler
Fair scheduling

I Perfect multitasking:
I From a single core standpoint

I At each moment, each process of the same priority has received an
exact amount of the CPU time

I What we would get if we could run n tasks in parallel on the CPU
while giving them 1/n of the CPU processing power → not
possible in reality

I Or if we could schedule tasks for infinitely small amounts of time
→ context switch overhead issue

I 3 main (high-level) CFS concepts:
1 CFS runs a process for some times, then swaps it for the runnable

process that has run the least
2 No default timeslice, CFS calculates how long a process should run

according to the number of runnable processes
3 That dynamic timeslice is weighted by the process priority

(nice)

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 18 / 51

Linux Completely Fair Scheduler Fair scheduling

Linux Completely Fair Scheduler
Fair scheduling (2)

I Targeted latency : period during which all runnable processes
should be scheduled at least once

I Example: processes with the same priority

I Example: processes with different priorities

I Minimum granularity : floor at 1 ms (default)
Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 19 / 51

CFS implementation

Outline

1 General information

2 Linux Completely Fair Scheduler

3 CFS implementation

4 Preemption and context switching

5 Real-time scheduling policies

6 Scheduling-related syscalls

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 20 / 51

CFS implementation

CFS implementation

I 4 main components:
1 Time accounting
2 Process selection
3 Scheduler entry point (calling the scheduler)
4 Sleeping & waking up

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 21 / 51

CFS implementation Time accounting

CFS implementation
Time accounting

I sched entity structure in the task struct (se field)

1 struct sched_entity
2 {
3 struct load_weight load;
4 struct rb_node run_node;
5 struct list_head group_node;
6 unsigned int on_rq;
7
8 u64 exec_start;
9 u64 sum_exec_runtime;

10 u64 vruntime;
11 u64 prev_sum_exec_runtime;
12
13 /* additional statistics not shown here */
14 }

I Virtual runtime
I How much time a process has been executed (ns)

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 22 / 51

CFS implementation Time accounting

CFS implementation
Time accounting (2)

1 static void update_curr(struct cfs_rq *
cfs_rq)

2 {
3 struct sched_entity *curr =
4 cfs_rq->curr;
5 u64 now = rq_clock_task(rq_of(cfs_rq));
6 u64 delta_exec;
7
8 if (unlikely(!curr))
9 return;

10
11 delta_exec = now - curr->exec_start;
12 if (unlikely((s64)delta_exec <= 0))
13 return;
14
15 curr->exec_start = now;
16
17 schedstat_set(curr->statistics.exec_max,
18 max(delta_exec, curr->statistics

.exec_max));

18 curr->sum_exec_runtime += delta_exec;
19 schedstat_add(cfs_rq->exec_clock,

delta_exec);
20
21 curr->vruntime += calc_delta_fair(

delta_exec, curr);
22 update_min_vruntime(cfs_rq);
23
24 if (entity_is_task(curr)) {
25 struct task_struct *curtask
26 = task_of(curr);
27
28 trace_sched_stat_runtime(curtask,

delta_exec, curr->vruntime);
29 cpuacct_charge(curtask, delta_exec);
30 account_group_exec_runtime(curtask,

delta_exec);
31 }
32
33 account_cfs_rq_runtime(cfs_rq,

delta_exec);
34 }

I Invoked regularly by the system timer, and when a process
becomes runnable/unrunnable

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 23 / 51

CFS implementation Process selection

CFS implementation
Process selection

I Adapted from [1]

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 24 / 51

CFS implementation Process selection

CFS implementation
Process selection (2)

I When CFS needs to choose which runnable process to run next:
I The process with the smallest vruntime is selected
I It is the leftmost node in the tree

1 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
2 {
3 struct rb_node *left = cfs_rq->rb_leftmost;
4
5 if (!left)
6 return NULL;
7
8 return rb_entry(left, struct sched_entity, run_node);
9 }

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 25 / 51

CFS implementation Process selection

CFS implementation
Process selection: adding a process to the tree

I A process is added through enqueue entity:

1 static void
2 enqueue_entity(struct cfs_rq *cfs_rq,

struct sched_entity *se, int flags)
3 {
4 bool renorm = !(flags & ENQUEUE_WAKEUP)

|| (flags & ENQUEUE_MIGRATED);
5 bool curr = cfs_rq->curr == se;
6
7 if (renorm && curr)
8 se->vruntime += cfs_rq->min_vruntime;
9

10 update_curr(cfs_rq);
11
12 if (renorm && !curr)
13 se->vruntime += cfs_rq->min_vruntime;
14
15 update_load_avg(se, UPDATE_TG);
16 enqueue_entity_load_avg(cfs_rq, se);
17 account_entity_enqueue(cfs_rq, se);
18 update_cfs_shares(cfs_rq);

19 if (flags & ENQUEUE_WAKEUP)
20 place_entity(cfs_rq, se, 0);
21
22 check_schedstat_required();
23 update_stats_enqueue(cfs_rq, se, flags);
24 check_spread(cfs_rq, se);
25 if (!curr)
26 __enqueue_entity(cfs_rq, se);
27 se->on_rq = 1;
28
29 if (cfs_rq->nr_running == 1) {
30 list_add_leaf_cfs_rq(cfs_rq);
31 check_enqueue_throttle(cfs_rq);
32 }
33 }

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 26 / 51

CFS implementation Process selection

CFS implementation
Process selection: adding a process to the tree (2)

I enqueue entity:

1 static void __enqueue_entity(struct cfs_rq

*cfs_rq, struct sched_entity *se)
2 {
3 struct rb_node **link = &cfs_rq->

tasks_timeline.rb_node;
4 struct rb_node *parent = NULL;
5 struct sched_entity *entry;
6 int leftmost = 1;
7
8 /*
9 * Find the right place in the rbtree:

10 */
11 while (*link) {
12 parent = *link;
13 entry = rb_entry(parent, struct

sched_entity, run_node);
14 /*
15 * We dont care about collisions.

Nodes with
16 * the same key stay together.
17 */

18 if (entity_before(se, entry)) {
19 link = &parent->rb_left;
20 } else {
21 link = &parent->rb_right;
22 leftmost = 0;
23 }
24 }
25 /*
26 * Maintain a cache of leftmost tree

entries (it is frequently
27 * used):
28 */
29 if (leftmost)
30 cfs_rq->rb_leftmost = &se->run_node;
31
32 rb_link_node(&se->run_node, parent, link

);
33 rb_insert_color(&se->run_node, &cfs_rq->

tasks_timeline);
34 }

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 27 / 51

CFS implementation Process selection

CFS implementation
Process selection: removing a process from the tree

I dequeue entity:

1 static void
2 dequeue_entity(struct cfs_rq *cfs_rq,

struct sched_entity *se, int flags)
3 {
4 update_curr(cfs_rq);
5 dequeue_entity_load_avg(cfs_rq, se);
6
7 update_stats_dequeue(cfs_rq, se, flags

);
8
9 clear_buddies(cfs_rq, se);

10
11 if (se != cfs_rq->curr)
12 __dequeue_entity(cfs_rq, se);
13 se->on_rq = 0;
14 account_entity_dequeue(cfs_rq, se);

15 if (!(flags & DEQUEUE_SLEEP))
16 se->vruntime -= cfs_rq->

min_vruntime;
17
18 return_cfs_rq_runtime(cfs_rq);
19
20 update_cfs_shares(cfs_rq);
21
22 if ((flags & (DEQUEUE_SAVE |

DEQUEUE_MOVE)) == DEQUEUE_SAVE)
23 update_min_vruntime(cfs_rq);
24 }

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 28 / 51

CFS implementation Process selection

CFS implementation
Process selection: removing a process from the tree (2)

I dequeue entity:
1 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
2 {
3 if (cfs_rq->rb_leftmost == &se->run_node) {
4 struct rb_node *next_node;
5
6 next_node = rb_next(&se->run_node);
7 cfs_rq->rb_leftmost = next_node;
8 }
9

10 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
11 }

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 29 / 51

CFS implementation Entry point: schedule()

CFS implementation
Entry point: schedule()

I The kernel calls schedule() anytime it wants to invoke the
scheduler

I Calls pick next task()
1 static inline struct task_struct *
2 pick_next_task(struct rq *rq, struct

task_struct *prev, struct pin_cookie
cookie)

3 {
4 const struct sched_class *class = &

fair_sched_class;
5 struct task_struct *p;
6
7 if (likely(prev->sched_class == class &&
8 rq->nr_running == rq->cfs.

h_nr_running)) {
9 p = fair_sched_class.pick_next_task(rq

, prev, cookie);
10 if (unlikely(p == RETRY_TASK))
11 goto again;
12
13 if (unlikely(!p))
14 p = idle_sched_class.pick_next_task(

rq, prev, cookie);
15 return p;
16 }

17 again:
18 for_each_class(class) {
19 p = class->pick_next_task(rq, prev,

cookie);
20 if (p) {
21 if (unlikely(p == RETRY_TASK))
22 goto again;
23 return p;
24 }
25 }
26
27 BUG(); /* the idle class will always

have a runnable task */
28 }

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 30 / 51

CFS implementation Sleeping and waking up

CFS implementation
Sleeping and waking up

I Multiple reasons for a task to sleep:
I Specified amount of time, waiting for I/O, blocking on a mutex, etc.

I Going to sleep - steps:
1 Task marks itself as sleeping
2 Task enters a waitqueue
3 Task leaves the rbtree of runnable processes
4 Task calls schedule() to select a new process to run

I Inverse steps for waking up
I Two states associated with sleeping:

I TASK INTERRUPTIBLE
I Will be awaken on signal reception

I TASK UNINTERRUPTIBLE
I Ignore signals

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 31 / 51

CFS implementation Sleeping and waking up

CFS implementation
Sleeping and waking up: wait queues

I Wait queue:
I List of processes waiting

for an event to occur

1 typedef struct __wait_queue_head
wait_queue_head_t

2 struct wait_queue_head {
3 spinlock_t lock;
4 struct list_head task_list;}

I Some simple interfaces used to go to sleep have races:
I It is possible to go to sleep after the event we are waiting for has

occurred
I Recommended way:

1 /* We assume the wait queue we want to wait on is accessible through a variable q */
2
3 DEFINE_WAIT(wait); /* initialize a wait queue entry */
4
5 add_wait_queue(q, &wait);
6 while (!condition) { /* event we are waiting for */
7 prepare_to_wait(&q, &wait, TASK_INTERRUPTIBLE);
8 if(signal_pending(current))
9 /* handle signal */

10 schedule();
11 }
12 finish_wait(&q, &wait);

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 32 / 51

CFS implementation Sleeping and waking up

CFS implementation
Sleeping and waking up: wait queues (2)

I Steps for waiting on a waitqueue:
1 Create a waitqueue entry (DEFINE WAIT())
2 Add the calling process to a wait queue (add wait queue())
3 Call prepare to wait() to change the process state
4 If the state is TASK INTERRUPTIBLE, a signal can wake the task

up → need to check
5 Executes another process with schedule()
6 When the task awakens, check the condition
7 When the condition is true, get out of the wait queue and set the

state accordingly using finish wait()

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 33 / 51

CFS implementation Sleeping and waking up

CFS implementation
Sleeping and waking up: wake up()

I Waking up is taken care of by wake up()
I Awakes all the processes on a waitqueue by default

1 #define wake_up(x) __wake_up(x, TASK_NORMAL, 1, NULL)
2 /* type of x is wait_queue_head_t */

I wake up() calls wake up common():

1 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
2 int nr_exclusive, int wake_flags, void *key)
3 {
4 wait_queue_t *curr, *next;
5
6 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
7 unsigned flags = curr->flags;
8
9 if (curr->func(curr, mode, wake_flags, key) &&

10 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
11 break; /* wakes up only a subset of ’exclusive’ tasks */
12 }
13 }

I Exclusive tasks are added through
prepare to wait exclusive()

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 34 / 51

CFS implementation Sleeping and waking up

CFS implementation
Sleeping and waking up: wake up() (2)

I A wait queue entry contains a pointer to a wake-up function
I include/linux/wait.h:

1 typedef struct __wait_queue wait_queue_t;
2 typedef int (*wait_queue_func_t)(wait_queue_t *wait, unsigned mode, int flags, void *key);
3 int default_wake_function(*wait_queue_func_t)(wait_queue_t *wait, unsigned mode,
4 int flags, void *key);
5
6 /* ... */
7
8 struct __wait_queue {
9 /* ... */

10 wait_queue_func_t func;
11 /* ... */
12 }

I default wake function() calls try to wake up() ...
I ... which calls ttwu queue() ...
I ... which calls ttwu do activate() (put the task back on

runqueue) ...
I ... which calls ttwu do wakeup ...
I ... which sets the task state to TASK RUNNING

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 35 / 51

CFS implementation CFS on multicores

CFS implementation
CFS on multicores: brief, high-level overview

I Per-CPU runqueues (rbtrees)
I To avoid costly accesses to shared data structures

I Runqueues must be kept balanced
I Ex: dual-core with one large runqueue of high-priority processes,

and a small one with low-priority processes
I High-priority processes get less CPU time than low-priority ones

I A load balancing algorithm is run periodically
I Balances the queues based on processes priorities and their actual

CPU usage

I More info: [6]

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 36 / 51

Preemption and context switching

Outline

1 General information

2 Linux Completely Fair Scheduler

3 CFS implementation

4 Preemption and context switching

5 Real-time scheduling policies

6 Scheduling-related syscalls

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 37 / 51

Preemption and context switching Context switch

Preemption and context switching
Context switch

I A context switch is the action of swapping the process currently
running on the CPU to another one

I Performed by the context switch() function
I Called by schedule()

1 Switch the address space through switch mm()
2 Switch the CPU state (registers) through switch to()

I A task can voluntarily relinquish the CPU by calling schedule()
I But when does the kernel check if there is a need of

preemption?
I need resched flag (per-process, in the thread info of current)

I need resched is set by:
1 scheduler tick() when the currently running task needs to be

preempted
2 try to wake up() when a process with higher priority wakes

up

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 38 / 51

Preemption and context switching need resched, user preemption

Preemption and context switching
need resched, user preemption

I The need resched flag is checked:
1 Upon returning to user space (from a syscall or an interrupt)
2 Upon returning from an interrupt

I If the flag is set, schedule() is called
I User preemption happens:

1 When returning to user space from a syscall
2 When returning to user space from an interrupt

I With Linux, the kernel is also subject to preemption

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 39 / 51

Preemption and context switching Kernel preemption

Preemption and context switching
Kernel preemption

I In most of Unix-like, kernel code is non-preemptive:
I It runs until it finishes

I Linux kernel code is preemptive
I A task can be preempted in the kernel as long as execution is in a

safe state
I Not holding any lock (kernel is SMP safe)

I preempt count in the thread info structure
I Indicates the current lock depth

I If need resched && !preempt count → safe to preempt
I Checked when returning to the kernel from interrupt
I need resched is also checked when releasing a lock and
preempt count is 0

I Kernel code can also call directly schedule()

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 40 / 51

Preemption and context switching Kernel preemption

Preemption and context switching
Kernel preemption (2)

I Kernel preemption can occur:
1 On return from interrupt to kernel space
2 When kernel code becomes preemptible again
3 If a task explicitly calls schedule() from the kernel
4 If a task in the kernel blocks (ex: mutex, result in a call to

schedule())

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 41 / 51

Real-time scheduling policies

Outline

1 General information

2 Linux Completely Fair Scheduler

3 CFS implementation

4 Preemption and context switching

5 Real-time scheduling policies

6 Scheduling-related syscalls

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 42 / 51

Real-time scheduling policies SCHED FIFO and SCHED RR

Real-time scheduling policies
SCHED FIFO and SCHED RR

I Soft real-time scheduling classes:
I Best effort, no guarantees

I Real-time task of any scheduling class will always run before
non-real time ones (CFS, SCHED OTHER)

I schedule() → pick next task() → for each class()

I 2 ”classical” RT scheduling policies (kernel/sched/rt.c):
I SCHED FIFO

I Tasks run until it blocks/yield, only a higher priority RT task can
preempt it

I Round-robin for tasks of same priority
I SCHED RR

I Same as SCHED FIFO, but with a fixed timeslice

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 43 / 51

Real-time scheduling policies Other scheduling policies

Real-time scheduling policies
Other scheduling policies

I SCHED DEADLINE:
I Real-time policies mainlined in v3.14 enabling predictable RT

scheduling
I EDF implementation based on a period of activation and a worst

case execution time (WCET) for each task
I More info: Documentation/sched-deadline.txt, [4], etc.

I SCHED BATCH: non-real-time, low priority background jobs
I SCHED IDLE: non-real-time, very low priority background jobs

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 44 / 51

Scheduling-related syscalls

Outline

1 General information

2 Linux Completely Fair Scheduler

3 CFS implementation

4 Preemption and context switching

5 Real-time scheduling policies

6 Scheduling-related syscalls

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 45 / 51

Scheduling-related syscalls Scheduling syscalls list

Scheduling-related syscalls
Scheduling syscalls list

I sched getscheduler, sched setscheduler

I nice

I sched getparam, sched setparam

I sched get priority max, sched get priority min

I sched getaffinity, sched setaffinity

I sched yield

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 46 / 51

Scheduling-related syscalls Usage example

Scheduling-related syscalls
Usage example

1 #define _GNU_SOURCE
2
3 #include <stdio.h>
4 #include <stdlib.h>
5 #include <sys/types.h>
6 #include <unistd.h>
7 #include <sched.h>
8 #include <assert.h>
9

10 void handle_err(int ret, char *func)
11 {
12 perror(func);
13 exit(EXIT_FAILURE);
14 }
15
16 int main(void)
17 {
18 pid_t pid = -1;
19 int ret = -1;
20 struct sched_param sp;
21 int max_rr_prio, min_rr_prio = -42;
22 size_t cpu_set_size = 0;
23 cpu_set_t cs;

24 /* Get the PID of the calling process */
25 pid = getpid();
26 printf("My pid is: %d\n", pid);
27
28 /* Get the scheduling class */
29 ret = sched_getscheduler(pid);
30 if(ret == -1)
31 handle_err(ret, "sched_getscheduler");
32 printf("sched_getscheduler returns: "
33 "%d\n", ret);
34 assert(ret == SCHED_OTHER);
35
36 /* Get the priority (nice/RT) */
37 sp.sched_priority = -1;
38 ret = sched_getparam(pid, &sp);
39 if(ret == -1)
40 handle_err(ret, "sched_getparam");
41 printf("My priority is: %d\n",
42 sp.sched_priority);
43
44 /* Set the priority (nice value) */
45 ret = nice(1);
46 if(ret == -1)
47 handle_err(ret, "nice");

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 47 / 51

Scheduling-related syscalls Usage example

Scheduling-related syscalls
Usage example (2)

46 /* Get the priority */
47 sp.sched_priority = -1;
48 ret = sched_getparam(pid, &sp);
49 if(ret == -1)
50 handle_err(ret, "sched_getparam");
51 printf("My priority is: %d\n",
52 sp.sched_priority);
53
54 /* Switch scheduling class to FIFO and
55 * the priority to 99 */
56 sp.sched_priority = 99;
57 ret = sched_setscheduler(pid,
58 SCHED_FIFO, &sp);
59 if(ret == -1)
60 handle_err(ret, "sched_setscheduler");
61
62 /* Get the scheduling class */
63 ret = sched_getscheduler(pid);
64 if(ret == -1)
65 handle_err(ret, "sched_getscheduler");
66 printf("sched_getscheduler returns:"
67 " %d\n", ret);
68 assert(ret == SCHED_FIFO);

65 /* Get the priority */
66 sp.sched_priority = -1;
67 ret = sched_getparam(pid, &sp);
68 if(ret == -1)
69 handle_err(ret, "sched_getparam");
70 printf("My priority is: %d\n",
71 sp.sched_priority);
72
73 /* Set the RT priority */
74 sp.sched_priority = 42;
75 ret = sched_setparam(pid, &sp);
76 if(ret == -1)
77 handle_err(ret, "sched_setparam");
78 printf("Priority changed to %d\n",
79 sp.sched_priority);
80
81 /* Get the priority */
82 sp.sched_priority = -1;
83 ret = sched_getparam(pid, &sp);
84 if(ret == -1)
85 handle_err(ret, "sched_getparam");
86 printf("My priority is: %d\n",
87 sp.sched_priority);

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 48 / 51

Scheduling-related syscalls Usage example

Scheduling-related syscalls
Usage example (2)

85 /* Get the max priority value for SCHED_RR */
86 max_rr_prio = sched_get_priority_max(SCHED_RR);
87 if(max_rr_prio == -1)
88 handle_err(max_rr_prio, "sched_get_priority_max");
89 printf("Max RR prio: %d\n", max_rr_prio);
90
91 /* Get the min priority value for SCHED_RR */
92 min_rr_prio = sched_get_priority_min(SCHED_RR);
93 if(min_rr_prio == -1)
94 handle_err(min_rr_prio, "sched_get_priority_min");
95 printf("Min RR prio: %d\n", min_rr_prio);
96
97 cpu_set_size = sizeof(cpu_set_t);
98 CPU_ZERO(&cs); /* clear the mask */
99 CPU_SET(0, &cs);

100 CPU_SET(1, &cs);
101 /* Set the affinity to CPUs 0 and 1 only */
102 ret = sched_setaffinity(pid, cpu_set_size, &cs);
103 if(ret == -1)
104 handle_err(ret, "sched_setaffinity");

105 /* Get the CPU affinity */
106 CPU_ZERO(&cs);
107 ret = sched_getaffinity(pid,
108 cpu_set_size, &cs);
109 if(ret == -1)
110 handle_err(ret,
111 "sched_getaffinity");
112 assert(CPU_ISSET(0, &cs));
113 assert(CPU_ISSET(1, &cs));
114 printf("Affinity tests OK\n");
115
116 /* Yield the CPU */
117 ret = sched_yield();
118 if(ret == -1)
119 handle_err(ret,
120 "sched_yield");
121
122 return EXIT_SUCCESS;
123 }

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 49 / 51

Additional documentation

Additional documentation

I CFS:
I http://www.ibm.com/developerworks/library/
l-completely-fair-scheduler/

I http://elinux.org/images/d/dc/Elc2013_Na.pdf

I Linux scheduling:
I https://www.cs.columbia.edu/˜smb/classes/
s06-4118/l13.pdf

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 50 / 51

http://www.ibm.com/developerworks/library/l-completely-fair-scheduler/
http://www.ibm.com/developerworks/library/l-completely-fair-scheduler/
http://elinux.org/images/d/dc/Elc2013_Na.pdf
https://www.cs.columbia.edu/~smb/classes/s06-4118/l13.pdf
https://www.cs.columbia.edu/~smb/classes/s06-4118/l13.pdf

Bibliography

Bibliography I

[1] Inside the linux 2.6 completely fair scheduler.
https://www.ibm.com/developerworks/library/l-completely-fair-scheduler/.
Accessed: 2017-02-01.

[2] The rotating staircase deadline scheduler.
https://lwn.net/Articles/224865/.
Accessed: 2017-01-29.

[3] Rsdl completely fair starvation free interactive cpu scheduler.
https://lwn.net/Articles/224654/.
Accessed: 2017-01-29.

[4] Sched deadline: a status update.
http://events.linuxfoundation.org/sites/events/files/slides/SCHED_DEADLINE-20160404.pdf.
Accessed: 2017-02-06.

[5] Understanding the linux 2.6.8.1 cpu scheduler.
https://web.archive.org/web/20131231085709/http://joshaas.net/linux/linux_cpu_scheduler.pdf.

Accessed: 2017-01-28.

[6] LOZI, J.-P., LEPERS, B., FUNSTON, J., GAUD, F., QUÉMA, V., AND FEDOROVA, A.
The linux scheduler: A decade of wasted cores.
In Proceedings of the Eleventh European Conference on Computer Systems (2016), EuroSys ’16, ACM, pp. 1:1–1:16.

Pierre Olivier (SSRG@VT) LKP - Process Scheduling February 21, 2017 51 / 51

https://www.ibm.com/developerworks/library/l-completely-fair-scheduler/
https://lwn.net/Articles/224865/
https://lwn.net/Articles/224654/
http://events.linuxfoundation.org/sites/events/files/slides/SCHED_DEADLINE-20160404.pdf
https://web.archive.org/web/20131231085709/http://joshaas.net/linux/linux_cpu_scheduler.pdf

	General information
	Scheduling
	Multitasking
	A bit of Linux scheduler history
	Scheduling policy

	Linux Completely Fair Scheduler
	Scheduling classes
	sched_class hooks
	Unix scheduling
	Fair scheduling

	CFS implementation
	Time accounting
	Process selection
	Entry point: schedule()
	Sleeping and waking up
	CFS on multicores

	Preemption and context switching
	Context switch
	need_resched, user preemption
	Kernel preemption

	Real-time scheduling policies
	SCHED_FIFO and SCHED_RR
	Other scheduling policies

	Scheduling-related syscalls
	Scheduling syscalls list
	Usage example

