
Linux Kernel Programming
Interrupts and Interrupt Handlers

Pierre Olivier

Systems Software Research Group @ Virginia Tech

February 28, 2017

Pierre Olivier (SSRG@VT) LKP - Interrupts & Handlers February 28, 2017 1 / 31



Outline

1 Interrupts: general information

2 Registering & writing an interrupt handler

3 Interrupt context

4 Interrupt handling internals in Linux

5 /proc/interrupts

6 Interrupt control

Pierre Olivier (SSRG@VT) LKP - Interrupts & Handlers February 28, 2017 2 / 31



Interrupts: general information

Outline

1 Interrupts: general information

2 Registering & writing an interrupt handler

3 Interrupt context

4 Interrupt handling internals in Linux

5 /proc/interrupts

6 Interrupt control

Pierre Olivier (SSRG@VT) LKP - Interrupts & Handlers February 28, 2017 3 / 31



Interrupts: general information Interrupts

Interrupts: general information
Interrupts

I Compared the the CPU, devices are slow
I Ex: when a read request is issued to the disk, it is sub-optimal to

wait, doing nothing until the data is ready (in RAM)
I Need to know when the hardware is ready

I Polling can create a lot of overhead
I Having the CPU check regularly the status of the hardware

I The solution is to have hardware devices signal the CPU that
they need attention

I Interrupts
I A key has been pressed on the keyboard
I A packet has been received on the network card
I etc.

Pierre Olivier (SSRG@VT) LKP - Interrupts & Handlers February 28, 2017 4 / 31



Interrupts: general information Interrupts

Interrupts: general information
Interrupts (2)

I Interrupts are electrical signals multiplexed by the interrupt
controller

I Sent on a specific pin of the CPU
I Once an interrupt is received, a dedicated function is executed:

I Interrupt handler
I They can be received in a completely non-deterministic way:

I The kernel/user space can be interrupted at (nearly) any time
to process an interrupt

Pierre Olivier (SSRG@VT) LKP - Interrupts & Handlers February 28, 2017 5 / 31



Interrupts: general information Interrupts

Interrupts: general information
Interrupts (3)

I Device identifier: interrupt
line or Interrupt ReQuest
(IRQ)

I Function executed by the
CPU: interrupt handler or
Interrupt Service Routine
(ISR)

I 8259A interrupt lines:
I IRQ #0: system timer
I IRQ #1: keyboard controller
I IRQ #3 and #4: serial port
I IRQ #5: terminal
I IRQ #6: floppy controller
I IRQ #8: RTC
I IRQ #12: mouse
I IRQ #14: ATA (disk)

I Source [2]
I Some interrupt lines can be shared among several devices

I True for most modern devices (PCIe)

Pierre Olivier (SSRG@VT) LKP - Interrupts & Handlers February 28, 2017 6 / 31



Interrupts: general information Exceptions

Interrupts: general information
Exceptions

I Exception are interrupt issued by the CPU executing some code
I Software interrupts, as opposed to hardware ones (devices)
I Happen synchronously with respect to the CPU clock
I Examples:

I Program faults: divide-by-zero, page fault, general protection fault,
etc.

I Voluntary exceptions: INT assembly instruction, for example for
syscall invocation

I List: [1]

I Exceptions are managed by the kernel the same way as hardware
interrupts

Pierre Olivier (SSRG@VT) LKP - Interrupts & Handlers February 28, 2017 7 / 31



Interrupts: general information Interrupt handlers

Interrupts: general information
Interrupt handlers

I The interrupt handlers (ISR) are kernel C functions associated to
interrupt lines

I Specific prototype
I Run in interrupt context

I Opposite to process context (system call)
I Also called atomic context as one cannot sleep in an ISR: it is not a

schedulable entity
I Managing an interrupt involves two high-level steps:

1 Acknowledging the reception (mandatory, fast)
2 Potentially performing additional work (possibly slow)

I Ex: processing a network packet available from the Network Interface
Card (NIC)

Pierre Olivier (SSRG@VT) LKP - Interrupts & Handlers February 28, 2017 8 / 31



Interrupts: general information Top-halves vs bottom-halves

Interrupts: general information
Top-halves vs bottom-halves

I Interrupt processing must be fast
I We are indeed interrupting user processes executing (user/kernel

space)
I In addition, other interrupts may need to be disabled during an

interrupt processing
I However, it sometimes involves performing significant

amount of work
I Conflicting goals

I Thus, processing an interrupt is broken down between:
1 Top-half: time-critical operations (ex: ack), run immediately upon

reception
2 Bottom-half: less critical/time-consuming work, run later with other

interrupts enabled

Pierre Olivier (SSRG@VT) LKP - Interrupts & Handlers February 28, 2017 9 / 31



Interrupts: general information Top-half & bottom-half example

Interrupts: general information
Top-half & bottom-half example

I drivers/input/keyboard/omap-keypad.c

1 /* (block 1) */
2 static int omap_kp_probe(struct

platform_device *pdev)
3 {
4 /* ... */
5 omap_kp->irq = platform_get_irq(pdev, 0);
6 if(omap_kp->irq >= 0) {
7 if(request_irq(omap_kp->irq,

omap_kp_interrupt, 0,
8 "omap-keypad", omap_kp) < 0)
9 goto err4;

10 }
11 }

1 /* (block 3) */
2 static DECLARE_TASKLET_DISABLED(
3 kp_tasklet, omap_kp_tasklet, 0);

1 /* (block 2) */
2 /* Top half: interrupt handler (ISR) */
3 static irqreturn_t omap_kp_interrupt(int

irq, void *dev_id)
4 {
5 /* disable keyboard interrupt */
6 omap_writew(1, /* ... */);
7
8 tasklet_schedule(&kp_tasklet);
9 return IRQ_HANDLED;

10 }

1 /* (block 4) */
2 /* Bottom half */
3 static void omap_kp_tasklet(unsigned long

data)
4 {
5 /* performs lot of work */
6 }

Pierre Olivier (SSRG@VT) LKP - Interrupts & Handlers February 28, 2017 10 / 31



Registering & writing an interrupt handler

Outline

1 Interrupts: general information

2 Registering & writing an interrupt handler

3 Interrupt context

4 Interrupt handling internals in Linux

5 /proc/interrupts

6 Interrupt control

Pierre Olivier (SSRG@VT) LKP - Interrupts & Handlers February 28, 2017 11 / 31



Registering & writing an interrupt handler Interrupt handler registration

Registering & writing an interrupt handler
Interrupt handler registration: request irq()

I request irq() (in includes/linux/interrupt.h)
1 static inline int __must_check
2 request_irq(unsigned int irq, irq_handler_t handler, unsigned long flags,
3 const char *name, void *dev)

I irq: interrupt number
I handler: function pointer to the actual handler

I prototype:
1 typedef irqreturn_t (*func)(int irq, void *data);

I name: String describing the associated device
I For example used in /proc/interrupts

I dev: unique value identifying a device among a set of devices
sharing an interrupt line

Pierre Olivier (SSRG@VT) LKP - Interrupts & Handlers February 28, 2017 12 / 31



Registering & writing an interrupt handler Interrupt handler registration

Registering & writing an interrupt handler
Interrupt handler registration: registration flags

Registration flags:
I IRQF DISABLED: disables all interrupts when processing this

handler
I Bad form, reserved for performance sensitive devices
I Generally handlers run with all interrupts enabled except their own
I Removed in 4.1

I IRQF SAMPLE RANDOM: this interrupt frequency will contribute to
the kernel entropy pool

I For Random Number Generation
I Do not set this on periodic interrupts! (ex: timer)

I RNG is used for example for cryptographic key generation

I IRQF TIMER: system timer
I IRQF SHARED: interrupt line can be shared

I Each of the handlers sharing the line must set this

Pierre Olivier (SSRG@VT) LKP - Interrupts & Handlers February 28, 2017 13 / 31



Registering & writing an interrupt handler Interrupt handler registration

Registering & writing an interrupt handler
Interrupt handler registration: irq request() (2)

I irq request() returns 0 on success, or standard error code
I -EBUSY: interrupt line already in use

I irq request() can sleep
I Creating an entry in the /proc virtual filesystem

I kmalloc() in the call stack

Pierre Olivier (SSRG@VT) LKP - Interrupts & Handlers February 28, 2017 14 / 31



Registering & writing an interrupt handler An interrupt example, freeing an interrupt handler

Registering & writing an interrupt handler
An interrupt example, freeing an interrupt handler

I omap-keypad registration
and handler:

1 static int omap_kp_probe(struct
platform_device *pdev)

2 {
3 /* ... */
4 if(request_irq(omap_kp->irq,

omap_kp_interrupt, 0, "omap-keypad",
omap_kp) < 0)

5 goto err4;
6 }

1 static irqreturn_t omap_kp_interrupt(int
irq, void *dev_id)

2 {
3 omap_writew(1, OMAP1_MPUIO_BASE +

OMAP_MPUIO_KBD_MASKIT);
4 tasklet_schedule(&kp_tasklet);
5 return IRQ_HANDLED;
6 }

I Freeing an irq is made
through free irq():

1 void free_irq(unsigned int irq, void
*dev);

I omap-keypad example:
1 static int omap_kp_remove(struct

platform_device *pdev)
2 {
3 /* ... */
4 free_irq(omap_kp->irq, omap_kp);
5 /* ... */
6 return 0;
7 }

Pierre Olivier (SSRG@VT) LKP - Interrupts & Handlers February 28, 2017 15 / 31



Registering & writing an interrupt handler Inside the interrupt handler

Registering & writing an interrupt handler
Inside the interrupt handler

I Interrupt handler prototype:
1 static irqreturn_t handler_name(int irq, void *dev);

I dev parameter:
I Must be unique between handlers sharing an interrupt line
I Set when registering the handler and can be accessed by the

handler
I ex: pass a pointer to a data structure representing the device

I Return value:
I IRQ NONE: the expected device was not the source of the interrupt
I IRQ HANDLED: correct invocation
I This macro can be used: IRQ RETVAL(x)

I If (x != 0), expands into IRQ HANDLED, otherwise expands into
IRQ NONE (example: vsc stat interrupt in
drivers/ata/sata vsc.c)

I Interrupt handlers do not need to be reentrant (thread-safe)
I The corresponding interrupt is disabled on all cores while its

handler is executing
Pierre Olivier (SSRG@VT) LKP - Interrupts & Handlers February 28, 2017 16 / 31



Registering & writing an interrupt handler Shared handlers

Registering & writing an interrupt handler
Shared handlers

I Shared handlers
I On registration:

I IRQ SHARED flag
I dev must be unique (ex: a pointer to a data structure representing

the device in question)
I Handler must be able to detect that the device actually

generated the interrupt it is called from
I When an interrupt occurs on a shared line, the kernel executes

sequentially all the handlers sharing this line
I Need hardware support at the device level and detection code in the

handler

Pierre Olivier (SSRG@VT) LKP - Interrupts & Handlers February 28, 2017 17 / 31



Interrupt context

Outline

1 Interrupts: general information

2 Registering & writing an interrupt handler

3 Interrupt context

4 Interrupt handling internals in Linux

5 /proc/interrupts

6 Interrupt control

Pierre Olivier (SSRG@VT) LKP - Interrupts & Handlers February 28, 2017 18 / 31



Interrupt context

Interrupt context

I The kernel can execute in Interrupt vs process context
I In process context following a syscall/an exception
I In interrupt context upon a hardware interrupt reception

I In interrupt context, sleeping/blocking is not possible
I The handler is not a schedulable entity (user/kernel thread)
I No kmalloc(x, GFP KERNEL)

I Use GFP ATOMIC
I No use of blocking synchronization primitives (ex: mutex)

I Use spinlocks
I Interrupt context is time-critical

I Other code is interrupted
I Interrupt handler stack:

I Before 2.6: handlers used the kernel stack of the interrupted
process

I Later: 1 dedicated stack per core for handlers (1 page)

Pierre Olivier (SSRG@VT) LKP - Interrupts & Handlers February 28, 2017 19 / 31



Interrupt handling internals in Linux

Outline

1 Interrupts: general information

2 Registering & writing an interrupt handler

3 Interrupt context

4 Interrupt handling internals in Linux

5 /proc/interrupts

6 Interrupt control

Pierre Olivier (SSRG@VT) LKP - Interrupts & Handlers February 28, 2017 20 / 31



Interrupt handling internals in Linux Interrupt processing path

Interrupt handling internals in Linux
Interrupt processing path

I Taken from the textbook

Pierre Olivier (SSRG@VT) LKP - Interrupts & Handlers February 28, 2017 21 / 31



Interrupt handling internals in Linux Interrupt processing path

Interrupt handling internals in Linux
Interrupt processing path (2)

I Specific entry point for each interrupt line
I Saves the interrupt number and the current registers
I Calls do IRQ()

I do IRQ():
I Acknowledge interrupt reception and disable the line
I calls architecture specific functions

I Call chain ends up by calling handle irq event percpu()
I Re-enable interrupts on the line if IRQF DISABLED was not

specified during handler registration
I Call the handler if the line is not shared
I Otherwise iterate over all the handlers registered on that line
I Disable interrupts on the line again if they were previously enabled

I do IRQ() returns to entry point that call ret from intr()
I Checks if reschedule is needed (need resched)
I Restore register values

Pierre Olivier (SSRG@VT) LKP - Interrupts & Handlers February 28, 2017 22 / 31



/proc/interrupts

Outline

1 Interrupts: general information

2 Registering & writing an interrupt handler

3 Interrupt context

4 Interrupt handling internals in Linux

5 /proc/interrupts

6 Interrupt control

Pierre Olivier (SSRG@VT) LKP - Interrupts & Handlers February 28, 2017 23 / 31



/proc/interrupts

/proc/interrupts

1 cat /proc/interrupts
2 CPU0 CPU1 ...
3 0: 19 0 ... IR-IO-APIC 2-edge timer
4 1: 5 3 ... IR-IO-APIC 1-edge i8042
5 8: 1 0 ... IR-IO-APIC 8-edge rtc0
6 9: 272 13275 ... IR-IO-APIC 9-fasteoi acpi
7 12: 387 11 ... IR-IO-APIC 12-edge i8042
8 16: 24 2 ... IR-IO-APIC 16-fasteoi ehci_hcd:usb1
9 23: 25 2 ... IR-IO-APIC 23-fasteoi ehci_hcd:usb2

I Columns:
1 Interrupt line (not showed if no handler installed)
2 Per-cpu occurrence count
3 Related interrupt controller name
4 Edge/level (fasteoi): way the interrupt is triggered
5 Associated device name

Pierre Olivier (SSRG@VT) LKP - Interrupts & Handlers February 28, 2017 24 / 31



Interrupt control

Outline

1 Interrupts: general information

2 Registering & writing an interrupt handler

3 Interrupt context

4 Interrupt handling internals in Linux

5 /proc/interrupts

6 Interrupt control

Pierre Olivier (SSRG@VT) LKP - Interrupts & Handlers February 28, 2017 25 / 31



Interrupt control

Interrupt control

I Kernel code sometimes needs to disable interrupts to ensure
atomic execution of a section of code

I I.e. we don’t want some code section to be interrupted by a handler
(as well as kernel preemption)

I The kernel provides an API to disable/enable interrupts:
I Disable interrupts for the current CPU
I Mask an interrupt line for the entire machine

I Note that disabling interrupts does not protect against concurrent
access from other cores

I Need locking, often used in conjunction with interrupts disabling

Pierre Olivier (SSRG@VT) LKP - Interrupts & Handlers February 28, 2017 26 / 31



Interrupt control Disabling interrupts on the local core

Interrupt control
Disabling interrupts on the local core

1 local_irq_disable();
2 /* ... */
3 local_irq_enable();

I local irq disable() should never be called twice without a
local irq enable() between them

I What if that code can be called from two locations:
1 One with interrupts disabled
2 One with interrupts enabled

I Need to save the interrupts state in order not to disable them
twice:

1 unsigned long flags;
2
3 local_irq_save(flags); /* disables interrupts _if needed_ */
4 /* .. */
5 local_irq_restore(flags); /* restores interrupts to the previous state */
6 /* flags is passed as value but both functions are actually macros */

Pierre Olivier (SSRG@VT) LKP - Interrupts & Handlers February 28, 2017 27 / 31



Interrupt control Disabling / enabling a specific interrupt line

Interrupt control
Disabling / enabling a specific interrupt line

I Disable / enable a specific interrupt for the entire system

1 void disable_irq(unsigned int irq); /* (1) */
2 void disable_irq_nosync(unsigned int irq); /* (2) */
3 void enable_irq(unsigned int irq); /* (3) */
4 void synchronize_irq(unsigned int irq); /* (4) */

1 Does not return until any currently running handler finishes
2 Do not wait for handler termination
3 Enables interrupt line
4 Wait for a specific line handler to terminate before returning

I These enable/disable calls can nest
I Must enable as much times as the previous disabling call number

I These functions do not sleep
I They can be called from interrupt context

Pierre Olivier (SSRG@VT) LKP - Interrupts & Handlers February 28, 2017 28 / 31



Interrupt control Querying the status of the interrupt system

Interrupt control
Querying the status of the interrupt system

I in interrupt() returns nonzero if the calling code is in
interrupt context

I Handler or bottom-half
I in irq() returns nonzero only if in a handler
I To check if the code is in process context:

I !in interrupt()

Pierre Olivier (SSRG@VT) LKP - Interrupts & Handlers February 28, 2017 29 / 31



Additional information

Additional information

I Interrupts:
I http://www.mathcs.emory.edu/˜jallen/Courses/355/
Syllabus/6-io/0-External/interupt.html

I More details on Linux interrupt management (v3.18):
I https://0xax.gitbooks.io/linux-insides/content/
interrupts/

Pierre Olivier (SSRG@VT) LKP - Interrupts & Handlers February 28, 2017 30 / 31

http://www.mathcs.emory.edu/~jallen/Courses/355/Syllabus/6-io/0-External/interupt.html
http://www.mathcs.emory.edu/~jallen/Courses/355/Syllabus/6-io/0-External/interupt.html
https://0xax.gitbooks.io/linux-insides/content/interrupts/
https://0xax.gitbooks.io/linux-insides/content/interrupts/


Bibliography

Bibliography I

[1] Exceptions - osdev wiki.
http://wiki.osdev.org/Exceptions.
Accessed: 2017-02-08.

[2] X86 assembly/programmable interrupt controller.
https://en.wikibooks.org/wiki/X86_Assembly/Programmable_Interrupt_Controller.
Accessed: 2017-02-08.

Pierre Olivier (SSRG@VT) LKP - Interrupts & Handlers February 28, 2017 31 / 31

http://wiki.osdev.org/Exceptions
https://en.wikibooks.org/wiki/X86_Assembly/Programmable_Interrupt_Controller

	Interrupts: general information
	Interrupts
	Exceptions
	Interrupt handlers
	Top-halves vs bottom-halves
	Top-half & bottom-half example

	Registering & writing an interrupt handler
	Interrupt handler registration
	An interrupt example, freeing an interrupt handler
	Inside the interrupt handler
	Shared handlers

	Interrupt context
	Interrupt handling internals in Linux
	Interrupt processing path

	/proc/interrupts
	Interrupt control
	Disabling interrupts on the local core
	Disabling / enabling a specific interrupt line
	Querying the status of the interrupt system


