
Linux Kernel Programming
Bottom-Halves and Deferring Work

Pierre Olivier

Systems Software Research Group @ Virginia Tech

March 2, 2017

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 1 / 41

Outline

1 Bottom-halves: general information

2 Softirqs

3 Tasklets

4 Workqueues

5 Using the right bottom-half and misc. information

6 Additional sources of information

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 2 / 41

Bottom-halves: general information

Outline

1 Bottom-halves: general information

2 Softirqs

3 Tasklets

4 Workqueues

5 Using the right bottom-half and misc. information

6 Additional sources of information

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 3 / 41

Bottom-halves: general information Presentation

Bottom-halves: general information
Presentation

I Top-halves (interrupt handlers) must be as quick as possible
I Because they interrupt kernel/user code

I Affects performance
I Because they run with one/all lines disabled

I Processing network traffic should not prevent the kernel from
receiving keystrokes

I Top-halves run in interrupt context: they cannot block
I Limit what they can do

I When processing an interrupt, the less-critical part of the work
is deferred to a bottom-half

I Runs later (regarding the moment the actual interrupt occurs)

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 4 / 41

Bottom-halves: general information Which part of the job in which half, reason of being

Bottom-halves: general information
Which part of the job in which half, reason of being

I Work is time sensitive? → top-half
I Work is related to the hardware? → top-half
I Work should not be interrupted by another/the same

interrupt? → top-half
I Everything else: → bottom-half

I Bottom-halves run later
I They generally run very soon after the actual interrupt
I Crucial point is to run with interrupts enabled

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 5 / 41

Bottom-halves: general information A bit of history

Bottom-halves: general information
A bit of history

I Old ”Bottom-Half” (BH) mechanism
I 32 of them, globally synchronized: only one running in the system

at the same time
I Performance bottleneck

I Task queues: queues of function pointers (handlers)
I Handlers run at various time depending on which queue they are on
I Not sufficient for performance critical subsystems (ex: networking)

I BH and task queues were removed in 2.5

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 6 / 41

Softirqs

Outline

1 Bottom-halves: general information

2 Softirqs

3 Tasklets

4 Workqueues

5 Using the right bottom-half and misc. information

6 Additional sources of information

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 7 / 41

Softirqs Implementing softirqs, softirq execution

Softirqs
Implementing softirqs, softirq execution

I Softirqs
I Bottom-half with the best performance
I kernel/softirq.c
I Rarely used directly (tasklets instead)

I However, tasklets are build upon softirqs

I include/linux/
interrupt.h:

1 struct softirq_action {
2 void (*action)(struct softirq_action *);
3 }

I kernel/interrupt.c:

1 static struct softirq_action
2 softirq_vec[NR_SOFTIRQS];
3 /* NR_SOFTIRQ is max 32 */

I Softirq handler:
1 void handler_name(struct softirq_action *);

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 8 / 41

Softirqs Implementing softirqs, softirq execution

Softirqs
Implementing softirqs, softirq execution (2)

I The kernel runs a softirq by executing the handler:
1 /* let’s assume my_softirq is a struct softirq_action * */
2 my_softirq->action(my_softirq);

I Softirq execution
I Once registered, a softirq must be raised to indicate it needs to

execute
I Generally done by the top-half handler

I Raised softirqs are checked and executed:
I In return from interrupt
I In a kernel thread, ksoftirqd
I In any code that explicitly checks for and runs raised softirqs

(do softirq())

I Check and run is done in do softirq()
I Goes over the softirq array (softirq vec)
I Executes the handlers of raised (pending) softirqs

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 9 / 41

Softirqs Using softirqs

Softirqs
Using softirqs: softirqs indexes

I Softirqs are declared statically at compile time
I enum in linux/interrupt.h

1 enum {
2 HI_SOFTIRQ=0, /* 0 */
3 TIMER_SOFTIRQ, /* 1 */
4 NET_TX_SOFTIRQ, /* 2 */
5 NET_RX_SOFTIRQ, /* 3 */
6 BLOCK_SOFTIRQ, /* 4 */
7 IRQ_POLL_SOFTIRQ, /* 5 */
8 TASKLET_SOFTIRQ, /* 6 */
9 SCHED_SOFTIRQ, /* 7 */

10 HRTIMER_SOFTIRQ /* 8 */
11 RCU_SOFTIRQ, /* 9 */
12 NR_SOFTIRQ
13 };

I Create an entry in this array to add a softirq to Linux
I Entries ranked by priority (HI SOFTIRQ is the highest)

I This is the order in which the array is iterated for softirq
execution

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 10 / 41

Softirqs Using softirqs

Softirqs
Using softirqs (2)

I (Very) simplified version of do softirq():

1 int i;
2
3 /* Iterate in priority order */
4 for(i = 0; i < NR_SOFTIRQ; i++) {
5 struct softirq_action *handler = softirq_vec[i];
6 int pending = is_pending(handler);
7
8 if(pending) {
9 handler->(action(handler));

10 }
11 }

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 11 / 41

Softirqs Using softirqs

Softirqs
Using softirqs: handler registration

I Handler registration done through open softirq():
1 open_softirq(SOFTIRQ_INDEX, softirq_handler);
2 /* real example (net/core/dev.c): */
3 open_softirq(NET_TX_SOFTIRQ, net_tx_action);

I Softirqs run in interrupt context
I Cannot block/sleep

I When a softirq handler is running, softirqs are disabled on the
local core

I However softirqs can run concurrently on different cores
I Including softirqs with the same index → shared data must be

protected against concurrent accesses (generally use
per-processor data)

I Good scalability vs tasklets
I If the same softirq is raised while its handler is running it can

executes on another core
I One tasklet cannot run concurrently on multiple cores

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 12 / 41

Softirqs Using softirqs

Softirqs
Using softirqs: raising a softirq

I raise softirq():
1 /* kernel/time/timer.c: */
2 raise_softirq(TIMER_SOFTIRQ);

I Disables interrupts on the local core before marking the softirq as
pending

I With local irq save()
I Restores them to the previous state afterward

I With local irq restore()

I Generally called from the interrupt handler (top-half)
I Optimization if interrupts are already off:

1 /* net/core/dev.c: */
2 raise_softirq_irqoff(NET_TX_SOFTIRQ);

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 13 / 41

Softirqs Softirq example

Softirqs
Softirq example

I Cannot be registered from module (softirq symbols not exported)
I Adding a softirq must be done from inside the kernel code

I include/linux/interrupt.h:

1 diff -rc linux-4.10.1/include/linux/interrupt.h linux-4.10.1.modified/include/linux/interrupt.
h

2 *** linux-4.10.1/include/linux/interrupt.h 2017-02-26 10:09:33.000000000 +0000
3 --- linux-4.10.1.modified/include/linux/interrupt.h 2017-02-28 15:57:46.088406158 +0000
4 ***************
5 *** 456,461 ****
6 --- 456,462 ----
7 SCHED_SOFTIRQ,
8 HRTIMER_SOFTIRQ, /* Unused, but kept as tools rely on the
9 numbering. Sigh! */

10 + PIERRE_SOFTIRQ,
11 RCU_SOFTIRQ, /* Preferable RCU should always be the last softirq */
12
13 NR_SOFTIRQS

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 14 / 41

Softirqs Softirq example

Softirqs
Softirq example (2)

I kernel/main.c:

13 diff -rc linux-4.10.1/init/main.c linux
-4.10.1.modified/init/main.c

14 *** linux-4.10.1/init/main.c 2017-02-26
10:09:33.000000000 +0000

15 --- linux-4.10.1.modified/init/main.c
2017-02-28 16:18:02.672173235 +0000

16 ***************
17 *** 89,94 ****
18 --- 89,100 ----
19 #include <asm/sections.h>
20 #include <asm/cacheflush.h>
21
22 +
23 + void pierre_softirq_handler(struct

softirq_action * action)
24 + {
25 + printk("Pierre softirq running!\n")

;
26 + }
27 +
28 static int kernel_init(void *);
29
30 extern void init_IRQ(void);

31 ***************
32 *** 669,674 ****
33 --- 675,686 ----
34
35 ftrace_init();
36
37 +
38 +
39 + open_softirq(PIERRE_SOFTIRQ,

pierre_softirq_handler);
40 + printk("Raising Pierre softirq\n");
41 + raise_softirq(PIERRE_SOFTIRQ);
42 +
43 /* Do the rest non-__init’ed, we’re

now alive */
44 rest_init();
45 }

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 15 / 41

Tasklets

Outline

1 Bottom-halves: general information

2 Softirqs

3 Tasklets

4 Workqueues

5 Using the right bottom-half and misc. information

6 Additional sources of information

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 16 / 41

Tasklets Implementing tasklets

Tasklets
Implementing tasklets

I Tasklets are implemented on top of softirqs
I Same behavior, simpler interface, less locking rules

I The same tasklet cannot run concurrently on multiple cores
I Implemented in HI SOFTIRQ and TASKLET SOFTIRQ softirqs

I A tasklet is represented by a tasklet struct
(include/linux/interrupt.h):

1 struct tasklet_struct
2 {
3 struct tasklet_struct *next;
4 unsigned long state;
5 atomic_t count;
6 void (*func)(unsigned long);
7 unsigned long data;
8 }

I func: handler (args: data)

I next: linked list of tasklets

I state: enum (scheduled to
run/running)

I count:
I !=0: disabled, cannot run
I 0: enabled, can be

marked pending

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 17 / 41

Tasklets Implementing tasklets

Tasklets
Implementing tasklets: scheduling tasklets

I Scheduling tasklets == raising softirqs
I Scheduled tasklets put in two per-processor linked lists:

I tasklet hi vec (high priority)
I tasklet vec

I Scheduling a tasklet is done through tasklet schedule(t) or
tasklet hi schedule(t):

1 Check if the tasklet is already scheduled, if not, call
tasklet schedule(t)

2 Disable interrupts
3 Add the tasklet to the corresponding linked list
4 Raise TASKLET SOFTIRQ or HI SOFTIRQ
5 Restore interrupts and return

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 18 / 41

Tasklets Implementing tasklets

Tasklets
Implementing tasklets: tasklets softirqs handlers

Tasklet softirqs handlers:
I tasklet action() and tasklet hi action()

1 Clear the list for the current CPU and iterate over its content, for
each raised tasklet:

1 Check TASKLET STATE RUN flag
2 If the tasklet is not running, set that flag
3 Check the count value (is it enabled?)
4 Run the tasklet and clear the TASKLET STATE RUN flag

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 19 / 41

Tasklets Using tasklets

Tasklets
Using tasklets: creation

I Creation:

1 /* Statically: */
2 DECLARE_TASKLET(tasklet_name, handler_name, handler_arguments);
3 DECLARE_TASKLET_DISABLED(tasklet_name, handler_name, handler_arguments);
4
5 /* Dynamically */
6 tasklet_ptr = kmalloc(sizeof(struct tasklet_struct), GFP_KERNEL);
7 tasklet_init(tasklet_ptr, handler_name, handler_arguments);

I Difference between DECLARE TASKLET() and
DECLARE TASKLET DISABLED():

I count field of the initialized struct task struct
I 1 for enabled, 0 for disabled (will not run even if it is scheduled to)

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 20 / 41

Tasklets Using tasklets

Tasklets
Using tasklets: handler

I Handler
I Prototype:

1 void handler_name(unsigned long data);

I Like softirqs, tasklets cannot sleep (run in interrupt context)
I No use of blocking semaphores, no kmalloc with GFP KERNEL, etc.

I Tasklets run with interrupts enabled
I Shared data with an interrupt handler? disable interrupts/get a

(non-sleeping) lock
I Two different tasklets can run concurrently on different cores: need

locking if a tasklet shares data with another tasklet or a softirq

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 21 / 41

Tasklets Using tasklets

Tasklets
Using tasklets: scheduling the tasklet to run, enabling/disabling a tasklet

I To mark the tasklet as pending: tasklet schedule()

1 tasklet_schedule(&tasklet_name); /* tasklet_name being of type struct tasklet */

I Runs one in a near future on the same CPU it is schedule from
I Independently of the number of calls to tasklet schedule()

I Disabling/enabling a tasklet:
1 tasklet_disable(&tasklet_name);
2 tasklet_enable(&tasklet_name);

I Set the count member of the struct tasklet
I tasklet disable() blocks until any potential running handler

finishes
I tasklet disable nosync() in order not to wait, probably unsafe
I tasklet enable() must be called after declaring a tasklet

through DELCARE TASKLET DISABLED()

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 22 / 41

Tasklets ksoftirqd

Tasklets
ksoftirqd

I System can be flooded by softirqs (and tasklets)
I Scenarios with high interrupts arrival frequency
I Plus softirqs can reactivate themselves

I Takes a lot of CPU time from userspace processes
I But softirqs still need to be processed promptly

I A solution is to defer reactivated softirqs until the next time softirq
run

I Generally at the next interrupt occurrence
I Sub-optimal on an idle system

I Solution: defer reactivated softirqs into per-cpu, low priority
kernel threads: ksoftirqd

I No starvation of CPU time for user space processes in case of
highly frequent interrupts

I ksoftirqd priority is nice 19
I On an idle system, ksoftirqd is scheduled quickly

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 23 / 41

Tasklets Tasklet example

Tasklets
Tasklet example

I Tasklet example in a module:

1 #include <linux/module.h>
2 #include <linux/kernel.h>
3 #include <linux/init.h>
4 #include <linux/interrupt.h>
5
6 void my_tasklet_handler(unsigned long data

);
7
8 static DECLARE_TASKLET(my_tasklet,

my_tasklet_handler, 0);
9

10 void my_tasklet_handler(unsigned long data
)

11 {
12 printk("tasklet executing.\n");
13 }

14 static int __init my_mod_init(void)
15 {
16 printk("Entering module.\n");
17 printk("Scheduling tasklet.\n");
18
19 tasklet_schedule(&my_tasklet);
20
21 return 0;
22 }
23
24 static void __exit my_mod_exit(void)
25 {
26 tasklet_disable(&my_tasklet);
27 printk(KERN_INFO "Exiting module.\n");
28 }
29
30 module_init(my_mod_init);
31 module_exit(my_mod_exit);

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 24 / 41

Workqueues

Outline

1 Bottom-halves: general information

2 Softirqs

3 Tasklets

4 Workqueues

5 Using the right bottom-half and misc. information

6 Additional sources of information

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 25 / 41

Workqueues Presentation

Workqueues
Presentation

I Workqueues run in process context
I They are a schedulable entity, so workqueues can sleep

I Needed when the bottom-half need to allocate a lot of memory, sleep
on a lock (semaphore/mutex), perform blocking I/O

I In these situations softirqs and tasklets cannot be used → use
workqueues

I Work deferred into work queues is handled by kernel threads:
I Default, per-cpu ones: kworker/n (before: events/n) where n is

the CPU id
I Syntax: kworker/<cpu>[unbound]:<id><priority>

I Workqueues users can also create their own threads
I Better performance & lighten the load on default threads

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 26 / 41

Workqueues Work queues implementation

Workqueues
Work queues implementation: worker pool and work struct

I kernel/workqueue.c:

1 struct worker_pool {
2 spinlock_t lock;
3 int cpu;
4 int node;
5 int id;
6 unsigned int flags;
7 /* list of work_struct: */
8 struct list_head worklist;
9 /* number of associated worker threads: */

10 int nr_workers;
11
12
13 /* ... */
14 };

1 struct work_struct {
2 atomic_long_t data;
3 struct list_head entry;
4 work_func_t func;
5 #ifdef CONFIG_LOCKDEP
6 struct lockdep_map lockdep_map;
7 #endif
8 };

I include/linux/workqueue.h:
1 typedef void (*work_func_t)(struct work_struct *work);

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 27 / 41

Workqueues Work queues implementation

Workqueues
Work queues implementation: worker thread function

I Worker threads execute the worker thread() function
(kernel/workqueue.c)

I Infinite loop doing the following:
1 Check if there is some work to do in the current pool
2 If so, execute all the work struct objects pending in the pool

worklist by calling process scheduled works()
I Call the work struct function pointer func, passing a pointer the

the work struct itself as a parameter
I work struct objects removed from the list after being processed

3 Go to sleep
I Worker threads are awaken next time some work is inserted in the

workqueue

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 28 / 41

Workqueues Using work queues

Workqueues
Using work queues

I Creating / destroying a workqueue:
1 struct workqueue_struct *create_workqueue(char *name);
2 void destroy_workqueue(struct workqueue_struct *);

I Creating a work entity:

1 /* statically: */
2 DECLARE_WORK(work, func);
3 DECLARE_DELAYED_WORK(work, func);
4 DECLARE_DEFERRABLE_WORK(work, func);

1 /* dynamically */
2 INIT_WORK{work_ptr, func);
3 INIT_DELAYED_WORK(work_ptr, func);
4 INIT_DEFERRABLE_WORK(work_ptr, func);

I work is the name of the initialized work struct
I work ptr is a pointer to an allocated work struct
I func is the name of the handler function
I DELAYED is related to work item which execution can be delayed by

a given time after they are scheduled to run
I DEFERRED indicates low priority work items

I Handler prototype:
1 void handler(struct work_struct *work);

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 29 / 41

Workqueues Using work queues

Workqueues
Using work queues (2)

I Creating a work entity, example:
1 static void my_handler(struct work_struct *work)
2 {
3 /* ... */
4 }
5
6 /* Static creation: */
7 DECLARE_WORK(work_item, my_handler);
8
9 static int __init my_init_function(void)

10 {
11 /* dynamic creation: */
12 struct work_struct * work_item2;
13
14 work_item2 = kmalloc(sizeof(struct work_item), GFP_KERNEL);
15 INIT_WORK(work_item2, my_handler);
16 }

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 30 / 41

Workqueues Using work queues

Workqueues
Using work queues (3)

I Enqueueing a work on a specific, previously created work queue:
1 int queue_work (struct workqueue_struct *wq, struct work_struct *work);
2 int queue_work_on (int cpu, struct workqueue_struct *wq, struct work_struct *work);
3 int queue_delayed_work (struct workqueue_struct *wq, struct delayed_work *work),

unsigned long delay);
4 int queue_delayed_work_on (int cpu, struct workqueue_struct *wq, struct delayed_work *

work), unsigned long delay);

I Enqueue on the default kernel threads (kworkers):
1 int schedule_work (struct work_struct *):
2 int schedule_work_on (int cpu, struct work_struct *):
3 int scheduled_delayed_work (struct delayed_work *, unsigned long delay);
4 int scheduled_delayed_work_on (int cpu, struct delayed_work *, unsigned long delay);

I Work executes next time a worker thread is awaken
I Can schedule on a specific core (” on” functions)
I Can delay execution by a given number of timer ticks (delay)

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 31 / 41

Workqueues Using work queues

Workqueues
Using work queues: work function parameters

I How to pass parameters to the work item handler?
I Not done directly like in tasklets, but the work struct is passed

as a parameter to its own handler execution
I Solution: put the work struct in a data structure

I Parameter as another member of the data structure
I Use container of() from inside the handler

1 struct work_item {
2 struct work_struct ws;
3 int parameter;
4 };
5
6 static void handler(struct work_struct *work)
7 {
8 struct work_item *wi = (struct work_item *)container_of(work, struct work_item, ws);
9 int parameter = wi->parameter;

10 }

I In that case (work struct as the first field of the containing data
structure), one can also do:

1 struct work_item *wi = (struct work_item *)work;

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 32 / 41

Workqueues Using work queues

Workqueues
Using work queues: utility functions

I To ensure work finishes its execution
1 /* flush a specific work_struct */
2 int flush_work(struct work_struct *work);
3 /* flushes a specific workqueue: */
4 void flush_workqueue(struct workqueue_struct *);
5 /* flush the default workqueue (kworkers): */
6 void flush_scheduled_work(void);

I Canceling scheduled work:
1 int cancel_work_sync(struct work_struct *work);
2 int cancel_delayed_work_sync(struct delayed_work *dwork);

I Checking if work is pending:
1 work_pending(work); /* work is struct work_struct */
2 delayed_work_pending(work); /* same thing */

I Destroying a workqueue:
1 void destroy_workqueue(struct workqueue_struct *);

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 33 / 41

Workqueues Workqueue module example

Workqueues
Workqueue module example

1 #include <linux/module.h>
2 #include <linux/kernel.h>
3 #include <linux/init.h>
4 #include <linux/slab.h>
5 #include <linux/workqueue.h>
6
7 struct work_item {
8 struct work_struct ws;
9 int parameter;

10 };
11
12 struct work_item *wi, *wi2;
13 struct workqueue_struct *my_wq;
14
15 static void handler(struct work_struct *

work)
16 {
17 int parameter = ((struct work_item *)

container_of(work, struct work_item,
ws))->parameter;

18 printk("doing some work ...\n");
19 printk("parameter is: %d\n", parameter);
20 }

21 static int __init my_mod_init(void)
22 {
23 printk("Entering module.\n");
24
25 my_wq = create_workqueue("pierre_wq");
26 wi = kmalloc(sizeof(struct work_item),

GFP_KERNEL);
27 wi2 = kmalloc(sizeof(struct work_item),

GFP_KERNEL);
28
29 INIT_WORK(&wi->ws, handler);
30 wi->parameter = 42;
31 INIT_WORK(&wi2->ws, handler);
32 wi2->parameter = -42;
33
34 schedule_work(&wi->ws);
35 queue_work(my_wq, &wi2->ws);
36
37 return 0;
38 }

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 34 / 41

Workqueues Workqueue module example

Workqueues
Workqueue module example (2)

39 static void __exit my_mod_exit(void)
40 {
41 flush_scheduled_work();
42 flush_workqueue(my_wq);
43 kfree(wi);
44 kfree(wi2);
45 destroy_workqueue(my_wq);
46 printk(KERN_INFO "Exiting module.\n");
47 }
48
49 module_init(my_mod_init);
50 module_exit(my_mod_exit);
51 MODULE_LICENSE("GPL");

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 35 / 41

Using the right bottom-half and misc. information

Outline

1 Bottom-halves: general information

2 Softirqs

3 Tasklets

4 Workqueues

5 Using the right bottom-half and misc. information

6 Additional sources of information

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 36 / 41

Using the right bottom-half and misc. information Using the right bottom-half

Using the right bottom-half and misc. information
Using the right bottom-half

I Work has a lot of potential for parallelism and/or is very
performance critical

I Softirqs
I Can run concurrently on multiple cores (need to take care of

concurrency issues)
I High performance: generally run very quickly after marked pending

I No need for parallelism but performance still important
I Tasklets

I Two tasklets cannot run concurrently on several cores
I Performance close to softirqs (depends on the tasklet type

considered)
I Need to run in process context

I Workqueues
I Can sleep
I Less performance, need to wait to be scheduled to perform work

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 37 / 41

Using the right bottom-half and misc. information Locking between bottom-halves

Using the right bottom-half and misc. information
Locking between bottom-halves

I Softirqs
I Need intra-softirq (same softirq) locking (thread-safe)
I Need inter-softirq (different softirqs) locking in case of shared data

between them
I Tasklets

I No need to protect against concurrent accesses from the same
tasklet

I Two different tasklets sharing data need proper locking
(inter-tasklets locking)

I Workqueues
I Intra- and inter-workqueue locking needed

I All of these generally run with interrupts enabled
I In case of shared data with an interrupt handler (top-half), disabling

interrupts + locking needed

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 38 / 41

Using the right bottom-half and misc. information Disabling bottom-half processing

Using the right bottom-half and misc. information
Disabling bottom-half processing

I To disable / enable softirqs and tasklets on the local core:
1 void local_bh_disable();
2 void local_bh_enable();

I Can nest
I Need to call local bh enable() as much times as

local bh disabled() was called to re-enable interrupts

I These calls do not disable workqueues processing
I Not a problem as these run in process context and do not happen

asynchronously like softirqs/tasklets

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 39 / 41

Additional sources of information

Outline

1 Bottom-halves: general information

2 Softirqs

3 Tasklets

4 Workqueues

5 Using the right bottom-half and misc. information

6 Additional sources of information

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 40 / 41

Additional sources of information

Additional sources of information
Disabling bottom-half processing

I Numerous details about the internals of Linux interrupt
management (top/bottom half): https://0xax.gitbooks.io/
linux-insides/content/interrupts/ (Linux 3.18)

I Workqueues documentation in Linux sources:
Documentation/workqueues.txt

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 41 / 41

https://0xax.gitbooks.io/linux-insides/content/interrupts/
https://0xax.gitbooks.io/linux-insides/content/interrupts/
Documentation/workqueues.txt

	Bottom-halves: general information
	Presentation
	Which part of the job in which half, reason of being
	A bit of history

	Softirqs
	Implementing softirqs, softirq execution
	Using softirqs
	Softirq example

	Tasklets
	Implementing tasklets
	Using tasklets
	ksoftirqd
	Tasklet example

	Workqueues
	Presentation
	Work queues implementation
	Using work queues
	Workqueue module example

	Using the right bottom-half and misc. information
	Using the right bottom-half
	Locking between bottom-halves
	Disabling bottom-half processing

	Additional sources of information

