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Bottom-halves: general information Presentation

Bottom-halves: general information
Presentation

I Top-halves (interrupt handlers) must be as quick as possible
I Because they interrupt kernel/user code

I Affects performance
I Because they run with one/all lines disabled

I Processing network traffic should not prevent the kernel from
receiving keystrokes

I Top-halves run in interrupt context: they cannot block
I Limit what they can do

I When processing an interrupt, the less-critical part of the work
is deferred to a bottom-half

I Runs later (regarding the moment the actual interrupt occurs)
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Bottom-halves: general information Which part of the job in which half, reason of being

Bottom-halves: general information
Which part of the job in which half, reason of being

I Work is time sensitive? → top-half
I Work is related to the hardware? → top-half
I Work should not be interrupted by another/the same

interrupt? → top-half
I Everything else: → bottom-half

I Bottom-halves run later
I They generally run very soon after the actual interrupt
I Crucial point is to run with interrupts enabled
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Bottom-halves: general information A bit of history

Bottom-halves: general information
A bit of history

I Old ”Bottom-Half” (BH) mechanism
I 32 of them, globally synchronized: only one running in the system

at the same time
I Performance bottleneck

I Task queues: queues of function pointers (handlers)
I Handlers run at various time depending on which queue they are on
I Not sufficient for performance critical subsystems (ex: networking)

I BH and task queues were removed in 2.5
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Softirqs Implementing softirqs, softirq execution

Softirqs
Implementing softirqs, softirq execution

I Softirqs
I Bottom-half with the best performance
I kernel/softirq.c
I Rarely used directly (tasklets instead)

I However, tasklets are build upon softirqs

I include/linux/
interrupt.h:

1 struct softirq_action {
2 void (*action)(struct softirq_action *);
3 }

I kernel/interrupt.c:

1 static struct softirq_action
2 softirq_vec[NR_SOFTIRQS];
3 /* NR_SOFTIRQ is max 32 */

I Softirq handler:
1 void handler_name(struct softirq_action *);
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Softirqs Implementing softirqs, softirq execution

Softirqs
Implementing softirqs, softirq execution (2)

I The kernel runs a softirq by executing the handler:
1 /* let’s assume my_softirq is a struct softirq_action * */
2 my_softirq->action(my_softirq);

I Softirq execution
I Once registered, a softirq must be raised to indicate it needs to

execute
I Generally done by the top-half handler

I Raised softirqs are checked and executed:
I In return from interrupt
I In a kernel thread, ksoftirqd
I In any code that explicitly checks for and runs raised softirqs

(do softirq())

I Check and run is done in do softirq()
I Goes over the softirq array (softirq vec)
I Executes the handlers of raised (pending) softirqs

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 9 / 41



Softirqs Using softirqs

Softirqs
Using softirqs: softirqs indexes

I Softirqs are declared statically at compile time
I enum in linux/interrupt.h

1 enum {
2 HI_SOFTIRQ=0, /* 0 */
3 TIMER_SOFTIRQ, /* 1 */
4 NET_TX_SOFTIRQ, /* 2 */
5 NET_RX_SOFTIRQ, /* 3 */
6 BLOCK_SOFTIRQ, /* 4 */
7 IRQ_POLL_SOFTIRQ, /* 5 */
8 TASKLET_SOFTIRQ, /* 6 */
9 SCHED_SOFTIRQ, /* 7 */

10 HRTIMER_SOFTIRQ /* 8 */
11 RCU_SOFTIRQ, /* 9 */
12 NR_SOFTIRQ
13 };

I Create an entry in this array to add a softirq to Linux
I Entries ranked by priority (HI SOFTIRQ is the highest)

I This is the order in which the array is iterated for softirq
execution
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Softirqs Using softirqs

Softirqs
Using softirqs (2)

I (Very) simplified version of do softirq():

1 int i;
2
3 /* Iterate in priority order */
4 for(i = 0; i < NR_SOFTIRQ; i++) {
5 struct softirq_action *handler = softirq_vec[i];
6 int pending = is_pending(handler);
7
8 if(pending) {
9 handler->(action(handler));

10 }
11 }
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Softirqs Using softirqs

Softirqs
Using softirqs: handler registration

I Handler registration done through open softirq():
1 open_softirq(SOFTIRQ_INDEX, softirq_handler);
2 /* real example (net/core/dev.c): */
3 open_softirq(NET_TX_SOFTIRQ, net_tx_action);

I Softirqs run in interrupt context
I Cannot block/sleep

I When a softirq handler is running, softirqs are disabled on the
local core

I However softirqs can run concurrently on different cores
I Including softirqs with the same index → shared data must be

protected against concurrent accesses (generally use
per-processor data)

I Good scalability vs tasklets
I If the same softirq is raised while its handler is running it can

executes on another core
I One tasklet cannot run concurrently on multiple cores
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Softirqs Using softirqs

Softirqs
Using softirqs: raising a softirq

I raise softirq():
1 /* kernel/time/timer.c: */
2 raise_softirq(TIMER_SOFTIRQ);

I Disables interrupts on the local core before marking the softirq as
pending

I With local irq save()
I Restores them to the previous state afterward

I With local irq restore()

I Generally called from the interrupt handler (top-half)
I Optimization if interrupts are already off:

1 /* net/core/dev.c: */
2 raise_softirq_irqoff(NET_TX_SOFTIRQ);
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Softirqs Softirq example

Softirqs
Softirq example

I Cannot be registered from module (softirq symbols not exported)
I Adding a softirq must be done from inside the kernel code

I include/linux/interrupt.h:

1 diff -rc linux-4.10.1/include/linux/interrupt.h linux-4.10.1.modified/include/linux/interrupt.
h

2 *** linux-4.10.1/include/linux/interrupt.h 2017-02-26 10:09:33.000000000 +0000
3 --- linux-4.10.1.modified/include/linux/interrupt.h 2017-02-28 15:57:46.088406158 +0000
4 ***************
5 *** 456,461 ****
6 --- 456,462 ----
7 SCHED_SOFTIRQ,
8 HRTIMER_SOFTIRQ, /* Unused, but kept as tools rely on the
9 numbering. Sigh! */

10 + PIERRE_SOFTIRQ,
11 RCU_SOFTIRQ, /* Preferable RCU should always be the last softirq */
12
13 NR_SOFTIRQS
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Softirqs Softirq example

Softirqs
Softirq example (2)

I kernel/main.c:

13 diff -rc linux-4.10.1/init/main.c linux
-4.10.1.modified/init/main.c

14 *** linux-4.10.1/init/main.c 2017-02-26
10:09:33.000000000 +0000

15 --- linux-4.10.1.modified/init/main.c
2017-02-28 16:18:02.672173235 +0000

16 ***************
17 *** 89,94 ****
18 --- 89,100 ----
19 #include <asm/sections.h>
20 #include <asm/cacheflush.h>
21
22 +
23 + void pierre_softirq_handler(struct

softirq_action * action)
24 + {
25 + printk("Pierre softirq running!\n")

;
26 + }
27 +
28 static int kernel_init(void *);
29
30 extern void init_IRQ(void);

31 ***************
32 *** 669,674 ****
33 --- 675,686 ----
34
35 ftrace_init();
36
37 +
38 +
39 + open_softirq(PIERRE_SOFTIRQ,

pierre_softirq_handler);
40 + printk("Raising Pierre softirq\n");
41 + raise_softirq(PIERRE_SOFTIRQ);
42 +
43 /* Do the rest non-__init’ed, we’re

now alive */
44 rest_init();
45 }
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Tasklets Implementing tasklets

Tasklets
Implementing tasklets

I Tasklets are implemented on top of softirqs
I Same behavior, simpler interface, less locking rules

I The same tasklet cannot run concurrently on multiple cores
I Implemented in HI SOFTIRQ and TASKLET SOFTIRQ softirqs

I A tasklet is represented by a tasklet struct
(include/linux/interrupt.h):

1 struct tasklet_struct
2 {
3 struct tasklet_struct *next;
4 unsigned long state;
5 atomic_t count;
6 void (*func)(unsigned long);
7 unsigned long data;
8 }

I func: handler (args: data)

I next: linked list of tasklets

I state: enum (scheduled to
run/running)

I count:
I !=0: disabled, cannot run
I 0: enabled, can be

marked pending
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Tasklets Implementing tasklets

Tasklets
Implementing tasklets: scheduling tasklets

I Scheduling tasklets == raising softirqs
I Scheduled tasklets put in two per-processor linked lists:

I tasklet hi vec (high priority)
I tasklet vec

I Scheduling a tasklet is done through tasklet schedule(t) or
tasklet hi schedule(t):

1 Check if the tasklet is already scheduled, if not, call
tasklet schedule(t)

2 Disable interrupts
3 Add the tasklet to the corresponding linked list
4 Raise TASKLET SOFTIRQ or HI SOFTIRQ
5 Restore interrupts and return
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Tasklets Implementing tasklets

Tasklets
Implementing tasklets: tasklets softirqs handlers

Tasklet softirqs handlers:
I tasklet action() and tasklet hi action()

1 Clear the list for the current CPU and iterate over its content, for
each raised tasklet:

1 Check TASKLET STATE RUN flag
2 If the tasklet is not running, set that flag
3 Check the count value (is it enabled?)
4 Run the tasklet and clear the TASKLET STATE RUN flag
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Tasklets Using tasklets

Tasklets
Using tasklets: creation

I Creation:

1 /* Statically: */
2 DECLARE_TASKLET(tasklet_name, handler_name, handler_arguments);
3 DECLARE_TASKLET_DISABLED(tasklet_name, handler_name, handler_arguments);
4
5 /* Dynamically */
6 tasklet_ptr = kmalloc(sizeof(struct tasklet_struct), GFP_KERNEL);
7 tasklet_init(tasklet_ptr, handler_name, handler_arguments);

I Difference between DECLARE TASKLET() and
DECLARE TASKLET DISABLED():

I count field of the initialized struct task struct
I 1 for enabled, 0 for disabled (will not run even if it is scheduled to)
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Tasklets Using tasklets

Tasklets
Using tasklets: handler

I Handler
I Prototype:

1 void handler_name(unsigned long data);

I Like softirqs, tasklets cannot sleep (run in interrupt context)
I No use of blocking semaphores, no kmalloc with GFP KERNEL, etc.

I Tasklets run with interrupts enabled
I Shared data with an interrupt handler? disable interrupts/get a

(non-sleeping) lock
I Two different tasklets can run concurrently on different cores: need

locking if a tasklet shares data with another tasklet or a softirq
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Tasklets Using tasklets

Tasklets
Using tasklets: scheduling the tasklet to run, enabling/disabling a tasklet

I To mark the tasklet as pending: tasklet schedule()

1 tasklet_schedule(&tasklet_name); /* tasklet_name being of type struct tasklet */

I Runs one in a near future on the same CPU it is schedule from
I Independently of the number of calls to tasklet schedule()

I Disabling/enabling a tasklet:
1 tasklet_disable(&tasklet_name);
2 tasklet_enable(&tasklet_name);

I Set the count member of the struct tasklet
I tasklet disable() blocks until any potential running handler

finishes
I tasklet disable nosync() in order not to wait, probably unsafe
I tasklet enable() must be called after declaring a tasklet

through DELCARE TASKLET DISABLED()
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Tasklets ksoftirqd

Tasklets
ksoftirqd

I System can be flooded by softirqs (and tasklets)
I Scenarios with high interrupts arrival frequency
I Plus softirqs can reactivate themselves

I Takes a lot of CPU time from userspace processes
I But softirqs still need to be processed promptly

I A solution is to defer reactivated softirqs until the next time softirq
run

I Generally at the next interrupt occurrence
I Sub-optimal on an idle system

I Solution: defer reactivated softirqs into per-cpu, low priority
kernel threads: ksoftirqd

I No starvation of CPU time for user space processes in case of
highly frequent interrupts

I ksoftirqd priority is nice 19
I On an idle system, ksoftirqd is scheduled quickly
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Tasklets Tasklet example

Tasklets
Tasklet example

I Tasklet example in a module:

1 #include <linux/module.h>
2 #include <linux/kernel.h>
3 #include <linux/init.h>
4 #include <linux/interrupt.h>
5
6 void my_tasklet_handler(unsigned long data

);
7
8 static DECLARE_TASKLET(my_tasklet,

my_tasklet_handler, 0);
9

10 void my_tasklet_handler(unsigned long data
)

11 {
12 printk("tasklet executing.\n");
13 }

14 static int __init my_mod_init(void)
15 {
16 printk("Entering module.\n");
17 printk("Scheduling tasklet.\n");
18
19 tasklet_schedule(&my_tasklet);
20
21 return 0;
22 }
23
24 static void __exit my_mod_exit(void)
25 {
26 tasklet_disable(&my_tasklet);
27 printk(KERN_INFO "Exiting module.\n");
28 }
29
30 module_init(my_mod_init);
31 module_exit(my_mod_exit);
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Workqueues Presentation

Workqueues
Presentation

I Workqueues run in process context
I They are a schedulable entity, so workqueues can sleep

I Needed when the bottom-half need to allocate a lot of memory, sleep
on a lock (semaphore/mutex), perform blocking I/O

I In these situations softirqs and tasklets cannot be used → use
workqueues

I Work deferred into work queues is handled by kernel threads:
I Default, per-cpu ones: kworker/n (before: events/n) where n is

the CPU id
I Syntax: kworker/<cpu>[unbound]:<id><priority>

I Workqueues users can also create their own threads
I Better performance & lighten the load on default threads
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Workqueues Work queues implementation

Workqueues
Work queues implementation: worker pool and work struct

I kernel/workqueue.c:

1 struct worker_pool {
2 spinlock_t lock;
3 int cpu;
4 int node;
5 int id;
6 unsigned int flags;
7 /* list of work_struct: */
8 struct list_head worklist;
9 /* number of associated worker threads: */

10 int nr_workers;
11
12
13 /* ... */
14 };

1 struct work_struct {
2 atomic_long_t data;
3 struct list_head entry;
4 work_func_t func;
5 #ifdef CONFIG_LOCKDEP
6 struct lockdep_map lockdep_map;
7 #endif
8 };

I include/linux/workqueue.h:
1 typedef void (*work_func_t)(struct work_struct *work);
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Workqueues Work queues implementation

Workqueues
Work queues implementation: worker thread function

I Worker threads execute the worker thread() function
(kernel/workqueue.c)

I Infinite loop doing the following:
1 Check if there is some work to do in the current pool
2 If so, execute all the work struct objects pending in the pool

worklist by calling process scheduled works()
I Call the work struct function pointer func, passing a pointer the

the work struct itself as a parameter
I work struct objects removed from the list after being processed

3 Go to sleep
I Worker threads are awaken next time some work is inserted in the

workqueue
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Workqueues Using work queues

Workqueues
Using work queues

I Creating / destroying a workqueue:
1 struct workqueue_struct *create_workqueue(char *name);
2 void destroy_workqueue(struct workqueue_struct *);

I Creating a work entity:

1 /* statically: */
2 DECLARE_WORK(work, func);
3 DECLARE_DELAYED_WORK(work, func);
4 DECLARE_DEFERRABLE_WORK(work, func);

1 /* dynamically */
2 INIT_WORK{work_ptr, func);
3 INIT_DELAYED_WORK(work_ptr, func);
4 INIT_DEFERRABLE_WORK(work_ptr, func);

I work is the name of the initialized work struct
I work ptr is a pointer to an allocated work struct
I func is the name of the handler function
I DELAYED is related to work item which execution can be delayed by

a given time after they are scheduled to run
I DEFERRED indicates low priority work items

I Handler prototype:
1 void handler(struct work_struct *work);
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Workqueues Using work queues

Workqueues
Using work queues (2)

I Creating a work entity, example:
1 static void my_handler(struct work_struct *work)
2 {
3 /* ... */
4 }
5
6 /* Static creation: */
7 DECLARE_WORK(work_item, my_handler);
8
9 static int __init my_init_function(void)

10 {
11 /* dynamic creation: */
12 struct work_struct * work_item2;
13
14 work_item2 = kmalloc(sizeof(struct work_item), GFP_KERNEL);
15 INIT_WORK(work_item2, my_handler);
16 }
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Workqueues Using work queues

Workqueues
Using work queues (3)

I Enqueueing a work on a specific, previously created work queue:
1 int queue_work (struct workqueue_struct *wq, struct work_struct *work);
2 int queue_work_on (int cpu, struct workqueue_struct *wq, struct work_struct *work);
3 int queue_delayed_work (struct workqueue_struct *wq, struct delayed_work *work),

unsigned long delay);
4 int queue_delayed_work_on (int cpu, struct workqueue_struct *wq, struct delayed_work *

work), unsigned long delay);

I Enqueue on the default kernel threads (kworkers):
1 int schedule_work (struct work_struct *):
2 int schedule_work_on (int cpu, struct work_struct *):
3 int scheduled_delayed_work (struct delayed_work *, unsigned long delay);
4 int scheduled_delayed_work_on (int cpu, struct delayed_work *, unsigned long delay);

I Work executes next time a worker thread is awaken
I Can schedule on a specific core (” on” functions)
I Can delay execution by a given number of timer ticks (delay)

Pierre Olivier (SSRG@VT) LKP - Bottom-Halves & Deferring Work March 2, 2017 31 / 41



Workqueues Using work queues

Workqueues
Using work queues: work function parameters

I How to pass parameters to the work item handler?
I Not done directly like in tasklets, but the work struct is passed

as a parameter to its own handler execution
I Solution: put the work struct in a data structure

I Parameter as another member of the data structure
I Use container of() from inside the handler

1 struct work_item {
2 struct work_struct ws;
3 int parameter;
4 };
5
6 static void handler( struct work_struct *work)
7 {
8 struct work_item *wi = (struct work_item *)container_of(work, struct work_item, ws);
9 int parameter = wi->parameter;

10 }

I In that case (work struct as the first field of the containing data
structure), one can also do:

1 struct work_item *wi = (struct work_item *)work;
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Workqueues Using work queues

Workqueues
Using work queues: utility functions

I To ensure work finishes its execution
1 /* flush a specific work_struct */
2 int flush_work(struct work_struct *work);
3 /* flushes a specific workqueue: */
4 void flush_workqueue(struct workqueue_struct *);
5 /* flush the default workqueue (kworkers): */
6 void flush_scheduled_work(void);

I Canceling scheduled work:
1 int cancel_work_sync(struct work_struct *work);
2 int cancel_delayed_work_sync(struct delayed_work *dwork);

I Checking if work is pending:
1 work_pending(work); /* work is struct work_struct */
2 delayed_work_pending(work); /* same thing */

I Destroying a workqueue:
1 void destroy_workqueue(struct workqueue_struct *);
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Workqueues Workqueue module example

Workqueues
Workqueue module example

1 #include <linux/module.h>
2 #include <linux/kernel.h>
3 #include <linux/init.h>
4 #include <linux/slab.h>
5 #include <linux/workqueue.h>
6
7 struct work_item {
8 struct work_struct ws;
9 int parameter;

10 };
11
12 struct work_item *wi, *wi2;
13 struct workqueue_struct *my_wq;
14
15 static void handler( struct work_struct *

work)
16 {
17 int parameter = ((struct work_item *)

container_of(work, struct work_item,
ws))->parameter;

18 printk("doing some work ...\n");
19 printk("parameter is: %d\n", parameter);
20 }

21 static int __init my_mod_init(void)
22 {
23 printk("Entering module.\n");
24
25 my_wq = create_workqueue("pierre_wq");
26 wi = kmalloc(sizeof(struct work_item),

GFP_KERNEL);
27 wi2 = kmalloc(sizeof(struct work_item),

GFP_KERNEL);
28
29 INIT_WORK(&wi->ws, handler);
30 wi->parameter = 42;
31 INIT_WORK(&wi2->ws, handler);
32 wi2->parameter = -42;
33
34 schedule_work(&wi->ws);
35 queue_work(my_wq, &wi2->ws);
36
37 return 0;
38 }
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Workqueues Workqueue module example

Workqueues
Workqueue module example (2)

39 static void __exit my_mod_exit(void)
40 {
41 flush_scheduled_work();
42 flush_workqueue(my_wq);
43 kfree(wi);
44 kfree(wi2);
45 destroy_workqueue(my_wq);
46 printk(KERN_INFO "Exiting module.\n");
47 }
48
49 module_init(my_mod_init);
50 module_exit(my_mod_exit);
51 MODULE_LICENSE("GPL");
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Using the right bottom-half and misc. information Using the right bottom-half

Using the right bottom-half and misc. information
Using the right bottom-half

I Work has a lot of potential for parallelism and/or is very
performance critical

I Softirqs
I Can run concurrently on multiple cores (need to take care of

concurrency issues)
I High performance: generally run very quickly after marked pending

I No need for parallelism but performance still important
I Tasklets

I Two tasklets cannot run concurrently on several cores
I Performance close to softirqs (depends on the tasklet type

considered)
I Need to run in process context

I Workqueues
I Can sleep
I Less performance, need to wait to be scheduled to perform work
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Using the right bottom-half and misc. information
Locking between bottom-halves

I Softirqs
I Need intra-softirq (same softirq) locking (thread-safe)
I Need inter-softirq (different softirqs) locking in case of shared data

between them
I Tasklets

I No need to protect against concurrent accesses from the same
tasklet

I Two different tasklets sharing data need proper locking
(inter-tasklets locking)

I Workqueues
I Intra- and inter-workqueue locking needed

I All of these generally run with interrupts enabled
I In case of shared data with an interrupt handler (top-half), disabling

interrupts + locking needed
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Using the right bottom-half and misc. information Disabling bottom-half processing

Using the right bottom-half and misc. information
Disabling bottom-half processing

I To disable / enable softirqs and tasklets on the local core:
1 void local_bh_disable();
2 void local_bh_enable();

I Can nest
I Need to call local bh enable() as much times as

local bh disabled() was called to re-enable interrupts

I These calls do not disable workqueues processing
I Not a problem as these run in process context and do not happen

asynchronously like softirqs/tasklets
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Additional sources of information

Additional sources of information
Disabling bottom-half processing

I Numerous details about the internals of Linux interrupt
management (top/bottom half): https://0xax.gitbooks.io/
linux-insides/content/interrupts/ (Linux 3.18)

I Workqueues documentation in Linux sources:
Documentation/workqueues.txt
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