
Linux Kernel Programming
Time Management

Pierre Olivier

Systems Software Research Group @ Virginia Tech

March 19, 2017

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 1 / 38

Outline

1 Kernel notion of time

2 Tick rate and Jiffies

3 hardware clocks and timers

4 Timers

5 Delaying execution

6 Time of day

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 2 / 38

Kernel notion of time

Outline

1 Kernel notion of time

2 Tick rate and Jiffies

3 hardware clocks and timers

4 Timers

5 Delaying execution

6 Time of day

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 3 / 38

Kernel notion of time

Kernel notion of time

I Having the notion of time passing in the kernel is essential in
multiple cases:

I Perform periodic tasks (ex: CFS time accounting)
I Delay some processing at a relative time in the future
I Give the time of the day

I Absolute vs relative time
I Central role of the system timer

I Periodic interrupt, system timer interrupt
I Update system uptime, time of day, balance runqueues, record

statistics, etc.
I Pre-programmed frequency, timer tick rate
I tick = 1/(tick rate) seconds

I Dynamic timers to schedule event a relative time from now in the
future

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 4 / 38

Tick rate and Jiffies

Outline

1 Kernel notion of time

2 Tick rate and Jiffies

3 hardware clocks and timers

4 Timers

5 Delaying execution

6 Time of day

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 5 / 38

Tick rate and Jiffies Tick rate

Tick rate and Jiffies
Tick rate: HZ

I The tick rate (system timer frequency) is defined in the HZ
variable

I Set to CONFIG HZ in include/asm-generic/param.h
I Kernel compile-time configuration option

I Default value is per-architecture:

Architecture Frequency (in Hertz) Period (ms)
x86 100 10
arm 100 10
Alpha 1024 1
...

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 6 / 38

Tick rate and Jiffies Tick rate

Tick rate and Jiffies
Tick rate: the ideal HZ value

I High vs low system timer frequency
I High timer frequency pros:

I High precision for:
I Kernel timers (finer resolution)
I System call with timeout value (ex: poll)

- Significant performance improvement for some applications
I Timing measurements

I Process preemption occurs more accurately
I Low frequency allows processes to potentially get (way) more CPU

time after the expiration of their timeslices
I Cons:

I More interrupts, more overhead
I Not very significant on modern hardware

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 7 / 38

Tick rate and Jiffies Tickless OS

Tick rate and Jiffies
Tickless OS

I Option to compile the kernel as a tickless system
I NO HZ family of compilation options

I The kernel dynamically reprogram the system timer according to
the current timer status

I Situation in which there are no events for hundreds of milliseconds
I Overhead reduction
I Energy savings

I CPUs spend more time in low power idle states

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 8 / 38

Tick rate and Jiffies Jiffies

Tick rate and Jiffies
Jiffies

I jiffies is a global variable containing the number of timer ticks
since the system booted

I unsigned long

I include/linux/jiffies.h:
1 extern unsigned long volatile __jiffy_data jiffies;

I Conversions:
I Seconds → jiffies: (seconds * HZ)
I jiffies → seconds: (jiffies / HZ)

1 unsigned long time_stamp = jiffies; /* Now */
2 unsigned long next_tick = jiffies + 1; /* One tick from now */
3 unsigned long later = jiffies + 5*HZ; /* 5 seconds from now */
4 unsigned long fraction = jiffies + HZ/10; /* 100 ms from now */

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 9 / 38

Tick rate and Jiffies Jiffies

Tick rate and Jiffies
Jiffies: internal representation

I unsigned long size is 32 bits on 32 bits architectures, and 64
bits for 64 bits architectures

I On a 32 bits variable with HZ == 100, overflows in 497 days
I Still on 32 bits with HZ == 1000, overflows in 50 days
I But on a 64 bits variable, no overflow for a very long time

I Want access to a 64 bits variable while still maintaining an unsigned
long on both architectures → linker magic

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 10 / 38

Tick rate and Jiffies Jiffies

Tick rate and Jiffies
Jiffies: wraparound

I An unsigned integer going over its maximum value wraps around
to zero

I On 32 bits, 0xFFFFFFFF + 0x1 == 0x0

1 unsigned long timeout = jiffies + HZ/2; /* timeout in .5 seconds */
2
3 /* do some work ... */
4
5 /* then check if we timed out */
6 if (jiffies < timeout) {
7 /* we did not time out */
8 } else {
9 /* timeout, error */

10 }

I If jiffies wraps around, chances are it will be inferior to
timeout even in the case of an actual timeout

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 11 / 38

Tick rate and Jiffies Jiffies

Tick rate and Jiffies
Jiffies: wraparound (2)

I Macros are available in include/linux/jiffies.h to handle
jiffies wraparound:

1 #define time_after(a,b)
2 #define time_before(a,b)
3 #define time_after_eq(a,b)
4 #define time_before_eq(a,b)

1 unsigned long timeout = jiffies + HZ/2; /* timeout in .5 seconds */
2 /* ... */
3 if (time_before(jiffies, timeout)) {
4 /* we did not time out */
5 } else {
6 /* timeout, error */
7 }

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 12 / 38

Tick rate and Jiffies Userspace and HZ

Tick rate and Jiffies
Userspace and HZ

I Values in ticks can be sent to userspace
I Some applications grew to rely on a hard-coded value of HZ to

convert in seconds
I The fact that HZ can change caused some malfunction

I The kernel defines a constant value for the tick rate viewed from
userspace: USER HZ

I For example it is 100 for x86
I In order to export a value in ticks (kernel space) to userspace,

conversion is needed:
1 clock_t jiffies_to_clock(unsigned long x);
2 clock_t jiffies_64_to_clock_t(u64 x);

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 13 / 38

hardware clocks and timers

Outline

1 Kernel notion of time

2 Tick rate and Jiffies

3 hardware clocks and timers

4 Timers

5 Delaying execution

6 Time of day

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 14 / 38

hardware clocks and timers RTC and the system timer

hardware clocks and timers
RTC and the system timer

I System timer
I Programmable hardware timer sending an interrupt at regular

intervals
I Programmed at boot time by the kernel to send an interrupt at HZ

frequency
I Other time sources on x86:

I CPU timestamp counter (TSC) incremented every CPU clock cycle
(read through RDTSC)

I Local APIC (intrerrupt controller) timer
I Real-Time Clock (RTC):

I Stores the wall-clock time (still incremented when the computer is
powered off)

I Backed-up by a small battery on the motherboard
I Linux stores the wall-clock time in a data structure at boot time

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 15 / 38

hardware clocks and timers Timer interrupt processing

hardware clocks and timers
Timer interrupt processing

I Constituted of two parts: (1) architecture-dependent and (2)
architecture-independent

I Architecture-dependent part is registered as the handler
(top-half) for the timer interrupt

I Generally performs those steps:
1 Acknowledge the system timer interrupt (reset if needed)
2 Save the wall clock time to the RTC
3 Call the architecture independent function

(still executed as part of the top-half)
I Architecture independent part: tick handle periodic()

I Call tick periodic()
I Increment jiffies64
I Update statistics for the currently running process and the entire

system (load average)
I Run dynamic timers
I Run scheduler tick()

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 16 / 38

hardware clocks and timers Timer interrupt processing

hardware clocks and timers
Timer interrupt processing: tick periodic(), do timer

I kernel/
time/tick-common.c:

1 static void tick_periodic(int cpu)
2 {
3 if (tick_do_timer_cpu == cpu) {
4 write_seqlock(&jiffies_lock);
5
6 /* Keep track of the next tick event */
7 tick_next_period =
8 ktime_add(tick_next_period, tick_period

);
9

10 do_timer(1); /* ! */
11 write_sequnlock(&jiffies_lock);
12 update_wall_time(); /* ! */
13 }
14
15 update_process_times(
16 user_mode(get_irq_regs())); /* ! */
17 profile_tick(CPU_PROFILING);
18 }

I kernel/
/time/timekeeping.c:

1 void do_timer(unsigned long ticks)
2 {
3 jiffies_64 += ticks;
4 calc_global_load(ticks);
5 }

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 17 / 38

hardware clocks and timers Timer interrupt processing

hardware clocks and timers
Timer interrupt processing: update process times()

I update process times() in kernel/timer/timer.c

1 Call account process tick() to add one tick to the time
passed:

I In a process in user space
I In a process in kernel space
I In the idle task

2 Call run local timers() and run expired timers
I Raise a softirq

3 Call scheduler tick()
I Call the task tick() function of the currently running process’s

scheduler class
I Update timeslices information
I Set need resched if needed

I Perform CPU runqueues load balancing (raise the
SCHED SOFTIRQ softirq)

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 18 / 38

Timers

Outline

1 Kernel notion of time

2 Tick rate and Jiffies

3 hardware clocks and timers

4 Timers

5 Delaying execution

6 Time of day

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 19 / 38

Timers Presentation

Timers
Presentation

I Timers == dynamic timers == kernel timers
I Used to delay the execution of some piece of code for a given

amount of time
I Contrary to bottom-halves that are deferring work in a ”just not now”

fashion

I struct timer list in
includes/linux/timer.h

I entry: linked list of timers
I expires: timer expiration

date in jiffies
I function: handler

1 struct timer_list {
2 struct hlist_node entry;
3 unsigned long expires;
4 void (*function)(unsigned long);
5 unsigned long data;
6 u32 flags;
7 /* ... */
8 }

I data: handler
parameters

I flags: TIMER IRQSAFE (executed with interrupts disabled),
TIMER DEFERRABLE (does not wake up an idle CPU [1])

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 20 / 38

Timers Using timers

Timers
Using timers

I Declaring, initializing and activating a timer:
1 void handler_name(unsigned long data)
2 {
3 /* executed when the timer expires */
4 /* ... */
5 }
6
7 void another function(void)
8 {
9 struct timer_list my_timer;

10
11 init_time(&my_timer); /* initialize internal fields */
12 my_timer.expires = jiffies + 2*HZ; /* expires in 2 secs */
13 my_timer.data = 42; /* 42 passed as parameter to the handler */
14 my_timer.function = handler_name;
15
16 /* activate the timer: */
17 add_timer(&my_timer);
18 }

I Modify the expiration date of an already running timer:
1 mod_timer(&my_timer, jiffies + another_delay);

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 21 / 38

Timers Using timers

Timers
Using timers (2)

I Deactivate a timer prior to its expiration:
1 del_timer(&my_timer);

I Returns 0 if the timer is already inactive, and 1 if the timer was
active

I Potential race condition on SMP when the handler is currently
running on another core

I Solution: del timer sync()

1 del_timer_sync(&my_timer);

I Waits for a potential currently running handler to finishes before
removing the timer

I Can be called from interrupt context only if the timer is irqsafe
(declared with TIMER IRQSAFE)
- Interrupt handler interrupting the timer handler and calling
del timer sync() → deadlock

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 22 / 38

Timers Race conditions

Timers
Race conditions

I Timers run asynchronously with the currently running code
I They run in softirq context
I Several potential race conditions exist

I Do not directly modify the expire field as a substitution for
mod timer():

1 /* unsafe on SMP: */
2 del_timer(&my_timer);
3 my_timer->expires = jiffies + new_delay;
4 add_timer(&my_timer);

I Use del timer sync() rather than del timer()

I Protect data shared by the handler and other entities

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 23 / 38

Timers Implementation

Timers
Implementation

I In the system timer interrupt handler, update process times()
is called

I Calls run local timers()
I Raises a softirq (TIMER SOFTIRQ)

I Softirq handler is run timer softirq()
I Calls run timers()

I Grab expired timers through collect expired timers()
I Executes function handlers with data parameters for expired

timers with expire timers()

I Timer handlers are executed in interrupt (softirq) context

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 24 / 38

Timers Example

Timers
Example

1 #include <linux/module.h>
2 #include <linux/kernel.h>
3 #include <linux/init.h>
4 #include <linux/timer.h>
5
6 #define PRINT_PREF "[TIMER_TEST] "
7
8 struct timer_list my_timer;
9

10 static void my_handler(unsigned long data)
11 {
12 printk(PRINT_PREF "handler executed!\n")

;
13 }
14
15 static int __init my_mod_init(void)
16 {
17 printk(PRINT_PREF "Entering module.\n");
18
19 /* initialize the timer data structure

internal values: */
20 init_timer(&my_timer);

21 /* fill out the interesting fields: */
22 my_timer.data = 0;
23 my_timer.function = my_handler;
24 my_timer.expires = jiffies + 2*HZ; /*

timeout == 2secs */
25
26 /* start the timer */
27 add_timer(&my_timer);
28 printk(PRINT_PREF "Timer started\n");
29
30 return 0;
31 }
32
33 static void __exit my_mod_exit(void)
34 {
35 del_timer(&my_timer);
36 printk(PRINT_PREF "Exiting module.\n");
37 }
38
39 module_init(my_mod_init);
40 module_exit(my_mod_exit);

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 25 / 38

Delaying execution

Outline

1 Kernel notion of time

2 Tick rate and Jiffies

3 hardware clocks and timers

4 Timers

5 Delaying execution

6 Time of day

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 26 / 38

Delaying execution

Delaying execution

I Sometimes the kernel needs to wait for some time without using
timers (bottom-halves)

I For example drivers communicating with the hardware
I Needed delay can be quite small, sometimes inferior to the timer

tick period
I Several solutions:

1 Busy looping
2 Small delays
3 schedule timeout()

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 27 / 38

Delaying execution Busy looping

Delaying execution
Busy looping

I Busy looping: spin on a loop until a given amount of ticks has
elapsed

1 unsigned long timeout = jiffies + 10; /* timeout in 10 ticks */
2
3 while(time_before(jiffies, timeout)); /* spin until now > timeout */

I Can use HZ to specify a delay in seconds:
1 unsigned long delay = jiffies + 2*HZ; /* 2 seconds */
2
3 while(time_before(jiffies, timeout));

I Amount of time to wait must be a multiple of the timer period
I This technique is generally sub-optimal as the waiting process

monopolizes the CPU

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 28 / 38

Delaying execution Busy looping

Delaying execution
Busy looping (2)

I A better solution is to leave the CPU while waiting:
1 unsigned long delay = jiffies + 2*HZ;
2
3 while(time_before(jiffies, delay))
4 cond_resched();

I cond resched() invokes the scheduler only if the
need resched flag is set

I Cannot be used from interrupt context (not a schedulable entity)
I Pure busy looping is probably also not a good idea from interrupt

handlers as they should be fast
I Busy looping can severely impact performance while a lock

is help or while interrupts are disabled

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 29 / 38

Delaying execution Small delays and BogoMIPS

Delaying execution
Small delays and BogoMIPS

I What if one wants to sleep for a time inferior to the system
timer period?

I HZ is 100 → period is 10ms
I HZ is 1000 → period is 1ms

I include/linux/delay.h:
1 void mdelay(unsigned long msecs);
2 void udelay(unsigned long usecs);
3 void ndelay(unsigned long nsecs);

I Implemented as a busy loop
I Kernel knows how many loop iterations the kernel can be done

in a given amount of time: BogoMIPS
I Unit: iterations / jiffy
I Calibrated at boot time
I Can be seen in /proc/cpuinfo

I udelay/ndelay should only be called for delays <1ms
I Risk of overflow

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 30 / 38

Delaying execution schedule timeout()

Delaying execution
schedule timeout()

I schedule timeout() put the calling task to sleep for at least n
ticks

I Usage:

1 set_current_state(TASK_INTERRUPTIBLE); /* can also use TASK_UNINTERRUPTIBLE */
2
3 schedule_timeout(2 * HZ); /* go to sleep for at least 2 seconds */

I Calling task must be in TASK INTERRUPTIBLE or
TASK UNINTERRUPTIBLE otherwise calling
schedule timeout() has no effect

I schedule timeout() should be called:
1 From process context
2 Without any lock held

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 31 / 38

Delaying execution schedule timeout()

Delaying execution
schedule timeout(): implementation

1 signed long __sched schedule_timeout(
signed long timeout)

2 {
3 struct timer_list timer;
4 unsigned long expire;
5
6 switch (timeout)
7 {
8 case MAX_SCHEDULE_TIMEOUT:
9 schedule();

10 goto out;
11 default:
12 if (timeout < 0) {
13 printk(KERN_ERR "schedule_timeout:

wrong timeout "
14 "value %lx\n", timeout);
15 dump_stack();
16 current->state = TASK_RUNNING;
17 goto out;
18 }
19 }
20
21 expire = timeout + jiffies;

22 setup_timer_on_stack(&timer,
process_timeout, (unsigned long)
current);

23 __mod_timer(&timer, expire, false);
24 schedule();
25 del_singleshot_timer_sync(&timer);
26
27 /* Remove the timer from the object

tracker */
28 destroy_timer_on_stack(&timer);
29
30 timeout = expire - jiffies;
31
32 out:
33 return timeout < 0 ? 0 : timeout;
34 }

I When the timer expires,
process timeout()
calls
wake up process()

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 32 / 38

Delaying execution Sleeping on a waitqueue with a timeout

Delaying execution
Sleeping on a waitqueue with a timeout

I Tasks can be placed on wait queues to wait for a specific event
I To wait for such an event with a timeout:

I Call schedule timeout() instead of schedule()

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 33 / 38

Time of day

Outline

1 Kernel notion of time

2 Tick rate and Jiffies

3 hardware clocks and timers

4 Timers

5 Delaying execution

6 Time of day

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 34 / 38

Time of day struct timespec and ktime t

Time of day
struct timespec and ktime t

I Linux provides plenty of function to get / set the time of the day
I Several data structures to represent a given point in time

I Two important ones are struct timespec and ktime t

I uapi/linux/time.h:

1 struct timespec {
2 __kernel_time tv_sec; /* seconds */
3 long tv_nsec; /* nanoseconds */
4 /* __kernel_time_t is long on x86_64 */
5 }

I include/
linux/time64.h:

1 #define timespec64 timespec

I include/linux/
ktime.h:

1 union ktime {
2 s64 tv64; /* nanoseconds */
3 };
4
5 typedef union ktime ktime_t;

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 35 / 38

Time of day API usage examples

Time of day
API usage examples

1 #include <linux/module.h>
2 #include <linux/kernel.h>
3 #include <linux/init.h>
4 #include <linux/timekeeping.h>
5 #include <linux/ktime.h>
6 #include <asm-generic/delay.h>
7
8 #define PRINT_PREF "[TIMEOFDAY] "
9

10 extern void getboottime64(struct
timespec64 *ts);

11
12 static int __init my_mod_init(void)
13 {
14 unsigned long seconds;
15 struct timespec64 ts, start, stop;
16 ktime_t kt, start_kt, stop_kt;
17
18 printk(PRINT_PREF "Entering module.\n"

);
19
20 /* Number of seconds since the epoch

(01/01/1970) */
21 seconds = get_seconds();
22 printk("get_seconds() returns %lu\n",

seconds);

23 /* Same thing with seconds + nanoseconds
using struct timespec */

24 ts = current_kernel_time64();
25 printk(PRINT_PREF "current_kernel_time64()

returns: %lu (sec),"
26 "i %lu (nsec)\n", ts.tv_sec, ts.tv_nsec);
27
28 /* Get the boot time offset */
29 getboottime64(&ts);
30 printk(PRINT_PREF "getboottime64() returns:

%lu (sec),"
31 "i %lu (nsec)\n", ts.tv_sec, ts.tv_nsec);
32
33 /* The correct way to print a struct

timespec as a single value: */
34 printk(PRINT_PREF "Boot time offset: %lu.%09

lu secs\n", ts.tv_sec, ts.tv_nsec);
35 /* Otherwise, just using %lu.%lu transforms

this:
36 * ts.tv_sec == 10
37 * ts.tv_nsec == 42
38 * into: 10.42 rather than 10.000000042 */

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 36 / 38

Time of day API usage examples

Time of day
API usage examples (2)

39 /* another interface using ktime_t (
number of nsec since boot) */

40 kt = ktime_get();
41 printk(PRINT_PREF "ktime_get() returns

%llu\n", kt.tv64);
42
43 /* Subtract two struct timespec */
44 getboottime64(&start);
45 stop = current_kernel_time64();
46 ts = timespec64_sub(stop, start);
47 printk(PRINT_PREF "Uptime: %lu.%09lu

secs\n", ts.tv_sec, ts.tv_nsec);
48
49 /* measure the execution time of a

piece of code */
50 start_kt = ktime_get();
51 udelay(100);
52 stop_kt = ktime_get();
53
54 kt = ktime_sub(stop_kt, start_kt);
55 printk(PRINT_PREF "Measured execution

time: %llu usecs\n", (kt.tv64)
/1000);

56
57 return 0;
58 }

59 static void __exit my_mod_exit(void)
60 {
61 printk(PRINT_PREF "Exiting module.\n");
62 }
63
64 module_init(my_mod_init);
65 module_exit(my_mod_exit);
66
67 MODULE_LICENSE("GPL");

1 obj-m += timeofday.o
2
3 all:
4 make -C /lib/modules/$(shell uname -r)/

build M=$(PWD) modules
5
6 test: all
7 sudo rmmod timeofday.ko &> /dev/null ||

true
8 sudo insmod timeofday.ko
9 sudo rmmod timeofday.ko

10
11 clean:
12 make -C /lib/modules/$(shell uname -r)/

build M=$(PWD) clean

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 37 / 38

Bibliography

Bibliography I

[1] CORBET, J.
Deferrable timers.
https://lwn.net/Articles/228143/.
Accessed: 2017-03-14.

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 38 / 38

https://lwn.net/Articles/228143/

	Kernel notion of time
	Tick rate and Jiffies
	Tick rate
	Tickless OS
	Jiffies
	Userspace and HZ

	hardware clocks and timers
	RTC and the system timer
	Timer interrupt processing

	Timers
	Presentation
	Using timers
	Race conditions
	Implementation
	Example

	Delaying execution
	Busy looping
	Small delays and BogoMIPS
	schedule_timeout()
	Sleeping on a waitqueue with a timeout

	Time of day
	struct timespec and ktime_t
	API usage examples

