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Kernel notion of time

Kernel notion of time

I Having the notion of time passing in the kernel is essential in
multiple cases:

I Perform periodic tasks (ex: CFS time accounting)
I Delay some processing at a relative time in the future
I Give the time of the day

I Absolute vs relative time
I Central role of the system timer

I Periodic interrupt, system timer interrupt
I Update system uptime, time of day, balance runqueues, record

statistics, etc.
I Pre-programmed frequency, timer tick rate
I tick = 1/(tick rate) seconds

I Dynamic timers to schedule event a relative time from now in the
future
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Tick rate and Jiffies Tick rate

Tick rate and Jiffies
Tick rate: HZ

I The tick rate (system timer frequency) is defined in the HZ
variable

I Set to CONFIG HZ in include/asm-generic/param.h
I Kernel compile-time configuration option

I Default value is per-architecture:

Architecture Frequency (in Hertz) Period (ms)
x86 100 10
arm 100 10
Alpha 1024 1
...
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Tick rate and Jiffies Tick rate

Tick rate and Jiffies
Tick rate: the ideal HZ value

I High vs low system timer frequency
I High timer frequency pros:

I High precision for:
I Kernel timers (finer resolution)
I System call with timeout value (ex: poll)

- Significant performance improvement for some applications
I Timing measurements

I Process preemption occurs more accurately
I Low frequency allows processes to potentially get (way) more CPU

time after the expiration of their timeslices
I Cons:

I More interrupts, more overhead
I Not very significant on modern hardware
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Tick rate and Jiffies Tickless OS

Tick rate and Jiffies
Tickless OS

I Option to compile the kernel as a tickless system
I NO HZ family of compilation options

I The kernel dynamically reprogram the system timer according to
the current timer status

I Situation in which there are no events for hundreds of milliseconds
I Overhead reduction
I Energy savings

I CPUs spend more time in low power idle states

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 8 / 38



Tick rate and Jiffies Jiffies

Tick rate and Jiffies
Jiffies

I jiffies is a global variable containing the number of timer ticks
since the system booted

I unsigned long

I include/linux/jiffies.h:
1 extern unsigned long volatile __jiffy_data jiffies;

I Conversions:
I Seconds → jiffies: (seconds * HZ)
I jiffies → seconds: (jiffies / HZ)

1 unsigned long time_stamp = jiffies; /* Now */
2 unsigned long next_tick = jiffies + 1; /* One tick from now */
3 unsigned long later = jiffies + 5*HZ; /* 5 seconds from now */
4 unsigned long fraction = jiffies + HZ/10; /* 100 ms from now */
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Tick rate and Jiffies Jiffies

Tick rate and Jiffies
Jiffies: internal representation

I unsigned long size is 32 bits on 32 bits architectures, and 64
bits for 64 bits architectures

I On a 32 bits variable with HZ == 100, overflows in 497 days
I Still on 32 bits with HZ == 1000, overflows in 50 days
I But on a 64 bits variable, no overflow for a very long time

I Want access to a 64 bits variable while still maintaining an unsigned
long on both architectures → linker magic
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Tick rate and Jiffies Jiffies

Tick rate and Jiffies
Jiffies: wraparound

I An unsigned integer going over its maximum value wraps around
to zero

I On 32 bits, 0xFFFFFFFF + 0x1 == 0x0

1 unsigned long timeout = jiffies + HZ/2; /* timeout in .5 seconds */
2
3 /* do some work ... */
4
5 /* then check if we timed out */
6 if (jiffies < timeout) {
7 /* we did not time out */
8 } else {
9 /* timeout, error */

10 }

I If jiffies wraps around, chances are it will be inferior to
timeout even in the case of an actual timeout
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Tick rate and Jiffies Jiffies

Tick rate and Jiffies
Jiffies: wraparound (2)

I Macros are available in include/linux/jiffies.h to handle
jiffies wraparound:

1 #define time_after(a,b)
2 #define time_before(a,b)
3 #define time_after_eq(a,b)
4 #define time_before_eq(a,b)

1 unsigned long timeout = jiffies + HZ/2; /* timeout in .5 seconds */
2 /* ... */
3 if (time_before(jiffies, timeout)) {
4 /* we did not time out */
5 } else {
6 /* timeout, error */
7 }
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Tick rate and Jiffies Userspace and HZ

Tick rate and Jiffies
Userspace and HZ

I Values in ticks can be sent to userspace
I Some applications grew to rely on a hard-coded value of HZ to

convert in seconds
I The fact that HZ can change caused some malfunction

I The kernel defines a constant value for the tick rate viewed from
userspace: USER HZ

I For example it is 100 for x86
I In order to export a value in ticks (kernel space) to userspace,

conversion is needed:
1 clock_t jiffies_to_clock(unsigned long x);
2 clock_t jiffies_64_to_clock_t(u64 x);
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hardware clocks and timers RTC and the system timer

hardware clocks and timers
RTC and the system timer

I System timer
I Programmable hardware timer sending an interrupt at regular

intervals
I Programmed at boot time by the kernel to send an interrupt at HZ

frequency
I Other time sources on x86:

I CPU timestamp counter (TSC) incremented every CPU clock cycle
(read through RDTSC)

I Local APIC (intrerrupt controller) timer
I Real-Time Clock (RTC):

I Stores the wall-clock time (still incremented when the computer is
powered off)

I Backed-up by a small battery on the motherboard
I Linux stores the wall-clock time in a data structure at boot time

Pierre Olivier (SSRG@VT) LKP - Time Management March 19, 2017 15 / 38



hardware clocks and timers Timer interrupt processing

hardware clocks and timers
Timer interrupt processing

I Constituted of two parts: (1) architecture-dependent and (2)
architecture-independent

I Architecture-dependent part is registered as the handler
(top-half) for the timer interrupt

I Generally performs those steps:
1 Acknowledge the system timer interrupt (reset if needed)
2 Save the wall clock time to the RTC
3 Call the architecture independent function

(still executed as part of the top-half)
I Architecture independent part: tick handle periodic()

I Call tick periodic()
I Increment jiffies64
I Update statistics for the currently running process and the entire

system (load average)
I Run dynamic timers
I Run scheduler tick()
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hardware clocks and timers Timer interrupt processing

hardware clocks and timers
Timer interrupt processing: tick periodic(), do timer

I kernel/
time/tick-common.c:

1 static void tick_periodic(int cpu)
2 {
3 if (tick_do_timer_cpu == cpu) {
4 write_seqlock(&jiffies_lock);
5
6 /* Keep track of the next tick event */
7 tick_next_period =
8 ktime_add(tick_next_period, tick_period

);
9

10 do_timer(1); /* ! */
11 write_sequnlock(&jiffies_lock);
12 update_wall_time(); /* ! */
13 }
14
15 update_process_times(
16 user_mode(get_irq_regs())); /* ! */
17 profile_tick(CPU_PROFILING);
18 }

I kernel/
/time/timekeeping.c:

1 void do_timer(unsigned long ticks)
2 {
3 jiffies_64 += ticks;
4 calc_global_load(ticks);
5 }
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hardware clocks and timers Timer interrupt processing

hardware clocks and timers
Timer interrupt processing: update process times()

I update process times() in kernel/timer/timer.c

1 Call account process tick() to add one tick to the time
passed:

I In a process in user space
I In a process in kernel space
I In the idle task

2 Call run local timers() and run expired timers
I Raise a softirq

3 Call scheduler tick()
I Call the task tick() function of the currently running process’s

scheduler class
I Update timeslices information
I Set need resched if needed

I Perform CPU runqueues load balancing (raise the
SCHED SOFTIRQ softirq)
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Timers Presentation

Timers
Presentation

I Timers == dynamic timers == kernel timers
I Used to delay the execution of some piece of code for a given

amount of time
I Contrary to bottom-halves that are deferring work in a ”just not now”

fashion

I struct timer list in
includes/linux/timer.h

I entry: linked list of timers
I expires: timer expiration

date in jiffies
I function: handler

1 struct timer_list {
2 struct hlist_node entry;
3 unsigned long expires;
4 void (*function)(unsigned long);
5 unsigned long data;
6 u32 flags;
7 /* ... */
8 }

I data: handler
parameters

I flags: TIMER IRQSAFE (executed with interrupts disabled),
TIMER DEFERRABLE (does not wake up an idle CPU [1])
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Timers Using timers

Timers
Using timers

I Declaring, initializing and activating a timer:
1 void handler_name(unsigned long data)
2 {
3 /* executed when the timer expires */
4 /* ... */
5 }
6
7 void another function(void)
8 {
9 struct timer_list my_timer;

10
11 init_time(&my_timer); /* initialize internal fields */
12 my_timer.expires = jiffies + 2*HZ; /* expires in 2 secs */
13 my_timer.data = 42; /* 42 passed as parameter to the handler */
14 my_timer.function = handler_name;
15
16 /* activate the timer: */
17 add_timer(&my_timer);
18 }

I Modify the expiration date of an already running timer:
1 mod_timer(&my_timer, jiffies + another_delay);
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Timers Using timers

Timers
Using timers (2)

I Deactivate a timer prior to its expiration:
1 del_timer(&my_timer);

I Returns 0 if the timer is already inactive, and 1 if the timer was
active

I Potential race condition on SMP when the handler is currently
running on another core

I Solution: del timer sync()

1 del_timer_sync(&my_timer);

I Waits for a potential currently running handler to finishes before
removing the timer

I Can be called from interrupt context only if the timer is irqsafe
(declared with TIMER IRQSAFE)
- Interrupt handler interrupting the timer handler and calling
del timer sync() → deadlock
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Timers Race conditions

Timers
Race conditions

I Timers run asynchronously with the currently running code
I They run in softirq context
I Several potential race conditions exist

I Do not directly modify the expire field as a substitution for
mod timer():

1 /* unsafe on SMP: */
2 del_timer(&my_timer);
3 my_timer->expires = jiffies + new_delay;
4 add_timer(&my_timer);

I Use del timer sync() rather than del timer()

I Protect data shared by the handler and other entities
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Timers Implementation

Timers
Implementation

I In the system timer interrupt handler, update process times()
is called

I Calls run local timers()
I Raises a softirq (TIMER SOFTIRQ)

I Softirq handler is run timer softirq()
I Calls run timers()

I Grab expired timers through collect expired timers()
I Executes function handlers with data parameters for expired

timers with expire timers()

I Timer handlers are executed in interrupt (softirq) context
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Timers Example

Timers
Example

1 #include <linux/module.h>
2 #include <linux/kernel.h>
3 #include <linux/init.h>
4 #include <linux/timer.h>
5
6 #define PRINT_PREF "[TIMER_TEST] "
7
8 struct timer_list my_timer;
9

10 static void my_handler(unsigned long data)
11 {
12 printk(PRINT_PREF "handler executed!\n")

;
13 }
14
15 static int __init my_mod_init(void)
16 {
17 printk(PRINT_PREF "Entering module.\n");
18
19 /* initialize the timer data structure

internal values: */
20 init_timer(&my_timer);

21 /* fill out the interesting fields: */
22 my_timer.data = 0;
23 my_timer.function = my_handler;
24 my_timer.expires = jiffies + 2*HZ; /*

timeout == 2secs */
25
26 /* start the timer */
27 add_timer(&my_timer);
28 printk(PRINT_PREF "Timer started\n");
29
30 return 0;
31 }
32
33 static void __exit my_mod_exit(void)
34 {
35 del_timer(&my_timer);
36 printk(PRINT_PREF "Exiting module.\n");
37 }
38
39 module_init(my_mod_init);
40 module_exit(my_mod_exit);
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Delaying execution

Delaying execution

I Sometimes the kernel needs to wait for some time without using
timers (bottom-halves)

I For example drivers communicating with the hardware
I Needed delay can be quite small, sometimes inferior to the timer

tick period
I Several solutions:

1 Busy looping
2 Small delays
3 schedule timeout()
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Delaying execution Busy looping

Delaying execution
Busy looping

I Busy looping: spin on a loop until a given amount of ticks has
elapsed

1 unsigned long timeout = jiffies + 10; /* timeout in 10 ticks */
2
3 while(time_before(jiffies, timeout)); /* spin until now > timeout */

I Can use HZ to specify a delay in seconds:
1 unsigned long delay = jiffies + 2*HZ; /* 2 seconds */
2
3 while(time_before(jiffies, timeout));

I Amount of time to wait must be a multiple of the timer period
I This technique is generally sub-optimal as the waiting process

monopolizes the CPU
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Delaying execution Busy looping

Delaying execution
Busy looping (2)

I A better solution is to leave the CPU while waiting:
1 unsigned long delay = jiffies + 2*HZ;
2
3 while(time_before(jiffies, delay))
4 cond_resched();

I cond resched() invokes the scheduler only if the
need resched flag is set

I Cannot be used from interrupt context (not a schedulable entity)
I Pure busy looping is probably also not a good idea from interrupt

handlers as they should be fast
I Busy looping can severely impact performance while a lock

is help or while interrupts are disabled
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Delaying execution Small delays and BogoMIPS

Delaying execution
Small delays and BogoMIPS

I What if one wants to sleep for a time inferior to the system
timer period?

I HZ is 100 → period is 10ms
I HZ is 1000 → period is 1ms

I include/linux/delay.h:
1 void mdelay(unsigned long msecs);
2 void udelay(unsigned long usecs);
3 void ndelay(unsigned long nsecs);

I Implemented as a busy loop
I Kernel knows how many loop iterations the kernel can be done

in a given amount of time: BogoMIPS
I Unit: iterations / jiffy
I Calibrated at boot time
I Can be seen in /proc/cpuinfo

I udelay/ndelay should only be called for delays <1ms
I Risk of overflow
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Delaying execution schedule timeout()

Delaying execution
schedule timeout()

I schedule timeout() put the calling task to sleep for at least n
ticks

I Usage:

1 set_current_state(TASK_INTERRUPTIBLE); /* can also use TASK_UNINTERRUPTIBLE */
2
3 schedule_timeout(2 * HZ); /* go to sleep for at least 2 seconds */

I Calling task must be in TASK INTERRUPTIBLE or
TASK UNINTERRUPTIBLE otherwise calling
schedule timeout() has no effect

I schedule timeout() should be called:
1 From process context
2 Without any lock held
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Delaying execution schedule timeout()

Delaying execution
schedule timeout(): implementation

1 signed long __sched schedule_timeout(
signed long timeout)

2 {
3 struct timer_list timer;
4 unsigned long expire;
5
6 switch (timeout)
7 {
8 case MAX_SCHEDULE_TIMEOUT:
9 schedule();

10 goto out;
11 default:
12 if (timeout < 0) {
13 printk(KERN_ERR "schedule_timeout:

wrong timeout "
14 "value %lx\n", timeout);
15 dump_stack();
16 current->state = TASK_RUNNING;
17 goto out;
18 }
19 }
20
21 expire = timeout + jiffies;

22 setup_timer_on_stack(&timer,
process_timeout, (unsigned long)
current);

23 __mod_timer(&timer, expire, false);
24 schedule();
25 del_singleshot_timer_sync(&timer);
26
27 /* Remove the timer from the object

tracker */
28 destroy_timer_on_stack(&timer);
29
30 timeout = expire - jiffies;
31
32 out:
33 return timeout < 0 ? 0 : timeout;
34 }

I When the timer expires,
process timeout()
calls
wake up process()
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Delaying execution Sleeping on a waitqueue with a timeout

Delaying execution
Sleeping on a waitqueue with a timeout

I Tasks can be placed on wait queues to wait for a specific event
I To wait for such an event with a timeout:

I Call schedule timeout() instead of schedule()
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Time of day struct timespec and ktime t

Time of day
struct timespec and ktime t

I Linux provides plenty of function to get / set the time of the day
I Several data structures to represent a given point in time

I Two important ones are struct timespec and ktime t

I uapi/linux/time.h:

1 struct timespec {
2 __kernel_time tv_sec; /* seconds */
3 long tv_nsec; /* nanoseconds */
4 /* __kernel_time_t is long on x86_64 */
5 }

I include/
linux/time64.h:

1 #define timespec64 timespec

I include/linux/
ktime.h:

1 union ktime {
2 s64 tv64; /* nanoseconds */
3 };
4
5 typedef union ktime ktime_t;
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Time of day API usage examples

Time of day
API usage examples

1 #include <linux/module.h>
2 #include <linux/kernel.h>
3 #include <linux/init.h>
4 #include <linux/timekeeping.h>
5 #include <linux/ktime.h>
6 #include <asm-generic/delay.h>
7
8 #define PRINT_PREF "[TIMEOFDAY] "
9

10 extern void getboottime64(struct
timespec64 *ts);

11
12 static int __init my_mod_init(void)
13 {
14 unsigned long seconds;
15 struct timespec64 ts, start, stop;
16 ktime_t kt, start_kt, stop_kt;
17
18 printk(PRINT_PREF "Entering module.\n"

);
19
20 /* Number of seconds since the epoch

(01/01/1970) */
21 seconds = get_seconds();
22 printk("get_seconds() returns %lu\n",

seconds);

23 /* Same thing with seconds + nanoseconds
using struct timespec */

24 ts = current_kernel_time64();
25 printk(PRINT_PREF "current_kernel_time64()

returns: %lu (sec),"
26 "i %lu (nsec)\n", ts.tv_sec, ts.tv_nsec);
27
28 /* Get the boot time offset */
29 getboottime64(&ts);
30 printk(PRINT_PREF "getboottime64() returns:

%lu (sec),"
31 "i %lu (nsec)\n", ts.tv_sec, ts.tv_nsec);
32
33 /* The correct way to print a struct

timespec as a single value: */
34 printk(PRINT_PREF "Boot time offset: %lu.%09

lu secs\n", ts.tv_sec, ts.tv_nsec);
35 /* Otherwise, just using %lu.%lu transforms

this:
36 * ts.tv_sec == 10
37 * ts.tv_nsec == 42
38 * into: 10.42 rather than 10.000000042 */
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Time of day API usage examples

Time of day
API usage examples (2)

39 /* another interface using ktime_t (
number of nsec since boot) */

40 kt = ktime_get();
41 printk(PRINT_PREF "ktime_get() returns

%llu\n", kt.tv64);
42
43 /* Subtract two struct timespec */
44 getboottime64(&start);
45 stop = current_kernel_time64();
46 ts = timespec64_sub(stop, start);
47 printk(PRINT_PREF "Uptime: %lu.%09lu

secs\n", ts.tv_sec, ts.tv_nsec);
48
49 /* measure the execution time of a

piece of code */
50 start_kt = ktime_get();
51 udelay(100);
52 stop_kt = ktime_get();
53
54 kt = ktime_sub(stop_kt, start_kt);
55 printk(PRINT_PREF "Measured execution

time: %llu usecs\n", (kt.tv64)
/1000);

56
57 return 0;
58 }

59 static void __exit my_mod_exit(void)
60 {
61 printk(PRINT_PREF "Exiting module.\n");
62 }
63
64 module_init(my_mod_init);
65 module_exit(my_mod_exit);
66
67 MODULE_LICENSE("GPL");

1 obj-m += timeofday.o
2
3 all:
4 make -C /lib/modules/$(shell uname -r)/

build M=$(PWD) modules
5
6 test: all
7 sudo rmmod timeofday.ko &> /dev/null ||

true
8 sudo insmod timeofday.ko
9 sudo rmmod timeofday.ko

10
11 clean:
12 make -C /lib/modules/$(shell uname -r)/

build M=$(PWD) clean
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