
Linux Kernel Programming
Process Address Space

Pierre Olivier

Systems Software Research Group @ Virginia Tech

March 30, 2017

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 1 / 35

Outline

1 Address space and memory descriptor

2 Virtual Memory Area

3 VMA manipulation

4 Page tables

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 2 / 35

Address space and memory descriptor

Outline

1 Address space and memory descriptor

2 Virtual Memory Area

3 VMA manipulation

4 Page tables

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 3 / 35

Address space and memory descriptor Address space

Address space and memory descriptor
Address space

I The memory that a process can access is called its address
space

I Illusion that the process can access 100% of the system memory
I With virtual memory, can be much larger than the actual amount of

physical memory
I Defined by the process page table set up by the kernel

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 4 / 35

Address space and memory descriptor Address space

Address space and memory descriptor
Address space (2)

I Each process is given a flat 32/64-bits address space
I Flat as opposed to segmented

I A memory address is an index within the address spaces:
I Identify a specific byte
I Example: 0x8fffa12dd24123fd

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 5 / 35

Address space and memory descriptor Address space

Address space and memory descriptor
Address space (3)

I Interval of addresses that the process has the right to access:
virtual memory areas (VMAs)

I VMAs can be dynamically added or removed to the process
address space

I VMAs have associated permissions: read, write, execute
I When a process try to access an address outside of valid VMAs, or

access a VMA with wrong permissions: segmentation fault
I VMAs can contain:

I Mapping of the executable file code (text section)
I Mapping of the executable file initialized variables (data section)
I Mapping of the zero page for uninitialized variables (bss section)
I Mapping of the zero page for the user-space stack
I Text, data, bss for each shared library used
I Memory-mapped files, shared memory segment, anonymous

mappings (used by malloc)

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 6 / 35

Address space and memory descriptor Address space

Address space and memory descriptor
Address space (4)

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 7 / 35

Address space and memory descriptor Memory descriptor

Address space and memory descriptor
Memory descriptor

I The kernel represent a process address space through a struct
mm struct object, the memory descriptor

I Defined in include/linux/mm types.h
I Interesting fields:

1 struct mm_struct {
2 struct vm_area_struct *mmap; /* list of VMAs */
3 struct rb_root mm_rb; /* rbtree of VMAs */
4 pgd_t *pgd; /* page global directory */
5 atomic_t mm_users; /* address space users */
6 atomic_t *mm_count; /* primary usage counters */
7 int map_count; /* number of VMAs */
8 struct rw_semaphore mmap_sem; /* VMA semaphore */
9 spinlock_t page_table_lock; /* page table lock */

10 struct list_head mmlist; /* list of all mm_struct */
11 unsigned long start_code; /* start address of code */
12 unsigned long end_code; /* end address of code */
13 unsigned long start_data; /* start address of data */
14 unsigned long end_data; /* end address of data */
15 /* ... */

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 8 / 35

Address space and memory descriptor Memory descriptor

Address space and memory descriptor
Memory descriptor (2)

16 /* ... */
17 unsigned long start_brk; /* start address of heap */
18 unsigned long end_brk; /* end address of heap */
19 unsigned long start_stack; /* start address of stack */
20 unsigned long arg_start; /* start of arguments */
21 unsigned long arg_end; /* end of arguments */
22 unsigned long env_start; /* start of environment */
23 unsigned long total_vm; /* total pages mapped */
24 unsigned long locked_vm; /* number of locked pages */
25 unsigned long flags; /* architecture specific data */
26 spinlock_t ioctx_lock; /* Asynchronous I/O list lock */
27 /* ... */
28 };

I mm users: number of processes (threads) using the address
space

I mm count: reference count:
I +1 if mm users > 0
I +1 if the kernel is using the address space
I When mm count reaches 0, the mm struct can be freed

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 9 / 35

Address space and memory descriptor Memory descriptor

Address space and memory descriptor
Memory descriptor (3)

I mmap and mm rb are respectively a linked list and a tree
containing all the VMAs in this address space

I List used to iterate over all the VMAs
I Links all VMAs sorted by ascending virtual addresses

I Tree used to find a specific VMA
I All mm struct are linked together in a doubly linked list

I Through the mmlist field if the mm struct

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 10 / 35

Address space and memory descriptor Memory descriptor allocation

Address space and memory descriptor
Memory descriptor allocation

I A task memory descriptor is located in the mm field of the
corresponding task struct

I Current task memory descriptor: current->mm
I During fork(), copy mm() is making a copy of the parent

memory descriptor for the child
I copy mm() calls dup mm() which calls allocate mm()→ allocates

a mm struct object from a slab cache
I Two threads sharing the same address space have the mm field of

their task struct pointing to the same mm struct object
I Threads are created using the CLONE VM flag passed to clone() →

allocate mm() is not called
I in copy mm():

1 /* ... */
2 struct mm_struct *oldmm;
3 oldmm = current->mm;
4 /* ... */
5 if (clone_flags & CLONE_VM) {
6 atomic_inc(&oldmm->mm_users);
7 mm = oldmm;

8 goto good_mm;
9 }

10 /* ... */
11 good_mm:
12 /* ... */
13 return 0;

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 11 / 35

Address space and memory descriptor Memory descriptor destruction

Address space and memory descriptor
Memory descriptor destruction

I When a process exits, do exit() is called
I It calls exit mm()

I Performs some housekeeping/statistics updates
I Calls mmput()

1 void mmput(struct mm_struct *mm)
2 {
3 might_sleep();
4
5 if (atomic_dec_and_test(&mm->mm_users))
6 __mmput(mm);
7 }

I mmput() decrements the users field and calls mmput() if it
reaches 0

I mmput() calls mmdrop(), that decrements the count field, and
calls mm drop() if it reaches 0

I mmdrop() calls free mm() which return the memory for the
mm struct() to the slab cache (i.e. free)

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 12 / 35

Address space and memory descriptor Memory descriptor and kernel threads

Address space and memory descriptor
Memory descriptor and kernel threads

I Kernel threads do not have a user-space address space
I mm field of a kernel thread task struct is NULL

I However they still need to access the kernel address space
I When a kernel thread is scheduled, the kernel notice its mm is NULL

so it keeps the previous address space loaded (page tables)
I Kernel makes the active mm field of the kernel thread to point on

the borrowed mm struct
I OK because kernel part is the same in all address spaces

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 13 / 35

Virtual Memory Area

Outline

1 Address space and memory descriptor

2 Virtual Memory Area

3 VMA manipulation

4 Page tables

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 14 / 35

Virtual Memory Area vm area srtuct

Virtual Memory Area
vm area srtuct

I Each VMA is represented by an object of type vm area struct
I Defined in include/linux/mm types.h
I Interesting fields:

1 struct vm_area_struct {
2 struct i mm_struct *vm_mm; /* associated address space (mm_struct) */
3 unsigned long vm_start; /* VMA start, inclusive */
4 unsigned long vm_end; /* VMA end, exclusive */
5 struct vm_area_struct *vm_next; /* list of VMAs */
6 struct vm_area_struct *vm_prev; /* list of VMAs */
7 pgprot_t vm_page_prot; /* access permissions */
8 unsigned long vm_flags; /* flags */
9 struct rb_node vm_rb; /* VMA node in the tree */

10 struct list_head anon_vma_chain; /* list of anonymous mappings */
11 struct anon_vma *anon_vma; /* anonmous vma object */
12 struct vm_operation_struct *vm_ops; /* operations */
13 unsigned long vm_pgoff; /* offset within file */
14 struct file *vm_file; /* mapped file (can be NULL) */
15 void *vm_private_data; /* private data */
16 /* ... */
17 }

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 15 / 35

Virtual Memory Area vm area srtuct

Virtual Memory Area
vm area srtuct (2)

I The VMA exists over [vm start, vm end[in the corresponding
address space

I Address space is pointed by the vm mm field (of type mm struct)
I Size in bytes: vm end - vm start
I Each VMA is unique to the associated mm struct

I Two processes mapping the same file will have two different
mm struct objects, and two different vm area struct objects

I Two threads sharing a mm struct object also share the
vm area struct objects

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 16 / 35

Virtual Memory Area Flags

Virtual Memory Area
Flags

I Flags specify properties and information for all the pages
contained in the VMA

I VM READ: pages can be read from
I VM WRITE: pages can be written to
I VM EXEC: code inside pages can be

executed
I VM SHARED: pages are shared

between multiple processes (if
unset the mapping is private)

I VM MAYREAD: the VM READ flag can
be set

I VM MAYWRITE: the VM WRITE flag
can be set

I VM MAYEXEC: the VM EXEC flag can
be set

I VM MAYSHARE: the VM SHARED flag
can be set

I VM GROWSDOWN: area can grow
downwards

I VM GROWSUP: area can grow
upwards

I VM SHM: area can be used for
shared memory

I VM DENYWRITE: area maps an
unwritable file

I VM EXECUTABLE: area maps
an executable file

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 17 / 35

Virtual Memory Area Flags

Virtual Memory Area
Flags (2)

I VM LOCKED: the area pages are
locked (will not be swapped-out)

I VM IO: the area maps a device IO
space

I VM SEQ READ: pages in the area
seem to be accessed sequentially

I VM RAND READ: pages seem to be
accessed randomly

I VM DONTCOPY: area will not be
copied upon fork()

I VM DONTEXPAND: area cannot grow
through mremap()

I VM ACCOUNT: area is an accounted
VM object

I VM HUGETLB: area uses hugetlb
pages

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 18 / 35

Virtual Memory Area Flags

Virtual Memory Area
Flags (3)

I Combining VM READ, VM WRITE and VM EXEC gives the
permissions for the entire area, for example:

I Object code is VM READ and VM EXEC
I Stack is VM READ and VM WRITE

I VM SEQ READ and VM RAND READ are set through the
madvise() system call

I Instructs the file pre-fetching algorithm read-ahead to increase or
decrease its agressivity

I VM HUGETLB indicates that the area uses pages larger than the
regular size

I 2M and 1G on x86
I Smaller page table → good for the TLB
I Less levels of page tables → faster address translation

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 19 / 35

Virtual Memory Area VMA operations

Virtual Memory Area
VMA operations

I vm ops in vm area struct points to a vm operations struct
object

I Contains function pointers to operate on a specific VMAs
I Defined in include/linux/mm.h

1 struct vm_operations_struct {
2 void (*open)(struct vm_area_struct * area);
3 void (*close)(struct vm_area_struct * area);
4 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
5 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
6 /* ... */
7 }

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 20 / 35

Virtual Memory Area VMA operations

Virtual Memory Area
VMA operations (2)

I Function pointers in vm operations struct:
I open(): called when the area is added to an address space
I close(): called when the area is removed from an address space
I fault(): invoked by the page fault handler when a page that is

not present in physical memory is accessed
I page mkwrite(): invoked by the page fault handler when a

previously read-only page is made writable
I Description of all operations in include/linux/mm.h

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 21 / 35

Virtual Memory Area VMAs in real life

Virtual Memory Area
VMAs in real life

I From userspace, one can observe the VMAs map for a given
process:

I cat /proc/<pid>/maps

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 22 / 35

Virtual Memory Area VMAs in real life

Virtual Memory Area
VMAs in real life (2)

I /proc/<pid>/maps columns description:
1 Address range
2 Permissions
3 Start offset of file mapping
4 Device containing the mapped file
5 Mapped file inode number
6 Mapped file pathname

I Can also use the command pmap <pid>

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 23 / 35

VMA manipulation

Outline

1 Address space and memory descriptor

2 Virtual Memory Area

3 VMA manipulation

4 Page tables

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 24 / 35

VMA manipulation Finding a VMA

VMA manipulation
Finding a VMA

I find vma(): used to find a VMA in which a specific memory
address resides

I Prototype in include/linux/mm.h:
1 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr);

I Defined in mm/mmap.c:
1 struct vm_area_struct *find_vma(struct

mm_struct *mm, unsigned long addr)
2 {
3 struct rb_node *rb_node;
4 struct vm_area_struct *vma;
5
6 /* Check the cache first. */
7 vma = vmacache_find(mm, addr);
8 if (likely(vma))
9 return vma;

10
11 rb_node = mm->mm_rb.rb_node;
12
13 while (rb_node) {
14 struct vm_area_struct *tmp;

15 tmp = rb_entry(rb_node, struct
vm_area_struct, vm_rb);

16
17 if (tmp->vm_end > addr) {
18 vma = tmp;
19 if (tmp->vm_start <= addr)
20 break;
21 rb_node = rb_node->rb_left;
22 } else
23 rb_node = rb_node->rb_right;
24 }
25
26 if (vma)
27 vmacache_update(addr, vma);
28 return vma;
29 }

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 25 / 35

VMA manipulation Finding a VMA

VMA manipulation
Finding a VMA (2)

I find vma prev(): returns in addition the last VMA before a
given address

I include/linux/mm.h:
1 struct vm_area_struct *find_vma_prev(struct mm_struct *mm, unsigned long addr,

struct vm_area_struct **pprev);

I find vma intersection(): returns the first VMA overlapping
a given address range

I include/linux/mm.h:

1 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct *
mm, unsigned long start_addr, unsigned long end_addr)

2 {
3 struct vm_area_struct * vma = find_vma(mm,start_addr);
4
5 if (vma && end_addr <= vma->vm_start)
6 vma = NULL;
7 return vma;
8 }

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 26 / 35

VMA manipulation Creating an address interval

VMA manipulation
Creating an address interval

I do mmap() is used to create a new linear address interval:
I Can result in the creation of a new VMAs
I Or a merge of the create area with an adjacent one when they have

the same permissions
I include/linux/mm.h:

1 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2 unsigned long len, unsigned long prot, unsigned long flags,
3 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);

I Caller must hold mm->mmap sem (RW semaphore)
I Maps the file file in the address space at address addr for

length len. Mapping starts at offset pgoff in the file
I prot specifies access permissions for the memory pages:

I PROT READ, PROT WRITE, PROT EXEC, PROT NONE

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 27 / 35

VMA manipulation Creating an address interval

VMA manipulation
Creating an address interval (2)

I flags specifies the rest of the VMA options:

I MAP SHARED: mapping can be
shared

I MAP PRIVATE: mapping cannot be
shared

I MAP FIXED: created interval must
start at addr

I MAP ANONYMOUS: mapping is not
file-backed

I MAP GROWSDOWN: corresponds to
VM GROWSDOWN

I MAP DENYWRITE: corresponds to
VM DENYWRITE

I MAP EXECUTABLE: corresponds to
VM EXECUTABLE

I MAP LOCKED: corresponds to
VM LOCKED

I MAP NORESERVE: no space
reserved for the mapping

I MAP POPULATE: populate (default)
page tables

I MAP NONBLOCK: do not block
on IO

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 28 / 35

VMA manipulation Creating an address interval

VMA manipulation
Creating an address interval (3)

I On error do mmap() returns a negative value
I On success:

I The kernel tries to merge the new interval with an adjacent one
having same permissions

I Otherwise, create a new VMA
I Returns a pointer to the start of the mapped memory area

I do mmap() is exported to user-space through mmap2()

1 void *mmap2(void *addr, size_t length, int prot, int flags, int fd, off_t pgoffset);

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 29 / 35

VMA manipulation Removing an address interval

VMA manipulation
Removing an address interval

I Removing an address interval is done through do munmap()
I include/linux/mm.h:

1 int do_munmap(struct mm_struct *, unsigned long, size_t);

I 0 returned on success
I Exported to user-space through munmap():

1 int munmap(void *addr, size_t len);

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 30 / 35

Page tables

Outline

1 Address space and memory descriptor

2 Virtual Memory Area

3 VMA manipulation

4 Page tables

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 31 / 35

Page tables Presentation

Page tables
Presentation

I Linux enables paging early in the boot process
I All memory accesses made by the CPU are virtual and

translated to physical addresses through the page tables
I Linux set the page tables and the translation is made automatically

by the hardware (MMU) according to the page tables content
I The address space is defined by VMAs and is sparsely populated

I One address space per process → one page table per process
I Lots of ”empty” areas
I Defining the page table as a single static array is a huge waste

of space
I A hierarchical tree structure is used

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 32 / 35

Page tables Page table setup

Page tables
Page table setup (2)

I Setting up the page table is performed by the kernel

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 33 / 35

Page tables Address translation

Page tables
Address translation

I Address translation is performed by the hardware

I More info on page tables and memory management: [2, 1]

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 34 / 35

Bibliography

Bibliography I

[1] Four-level page tables.
https://lwn.net/Articles/106177/.
Accessed: 2017-03-25.

[2] GORMAN, M.
Understanding the Linux virtual memory manager.
Prentice Hall Upper Saddle River, 2004.
Accessed: 2017-03-25.

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 35 / 35

https://lwn.net/Articles/106177/

	Address space and memory descriptor
	Address space
	Memory descriptor
	Memory descriptor allocation
	Memory descriptor destruction
	Memory descriptor and kernel threads

	Virtual Memory Area
	vm_area_srtuct
	Flags
	VMA operations
	VMAs in real life

	VMA manipulation
	Finding a VMA
	Creating an address interval
	Removing an address interval

	Page tables
	Presentation
	Page table setup
	Address translation

