Linux Kernel Programming

Process Address Space

Pierre Olivier

Systems Software Research Group @ Virginia Tech

March 30, 2017

[T Tech
@

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 1/35

@ Address space and memory descriptor

(@ Virtual Memory Area
@ VMA manipulation

@ Page tables

Pierre Olivier (SSRG@VT) LKP - Process Address Space

March 30, 2017

[T Tech
@

2/35

Address space and memory descriptor

Outline

@ Address space and memory descriptor

[T Tech
@

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 BI85

Address space and memory descriptor Address space

Address space and memory descriptor

Address space

» The memory that a process can access is called its address
space
» lllusion that the process can access 100% of the system memory
» With virtual memory, can be much larger than the actual amount of
physical memory

» Defined by the process page table set up by the kernel

Linux 319 Oxffffe8ffffffffff Oxffffead000000000
Xx86_64 0XFFFTco0000000000 D*ff;:f?::::::;;;;woo
CE3ArAEEEEEEEEERED OXTFFFFFFTa0000000
0x0 0xfffF880000000000 OXFFFFFFFFfffofiffT
+ \i Yy Yy w Y y
: vmalloc/ virtual kernel
hole | dirmap . modules
|Dremap mem. map || text

- 128TB > lé E!,' 32TB 1TB 512MB 1.5(3§|

User space memory Kernel space memory -
. . .. nia
(Some areas not displayed for simplicity) (L] Tech

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 4/35

Address space and memory descriptor Address space

Address space and memory descriptor
Address space (2)

» Each process is given a flat 32/64-bits address space
» Flat as opposed to segmented

16-bit Segment selector
CPU (base): 0x1000

Address accessed: Resulting physical @: ‘
Adapted from
Memory address
(offset): 0x1234

http:/duartes.org/gustavo/blog/
post/memory-translation-and-segm
entation/

» A memory address is an index within the address spaces:
» |dentify a specific byte
» Example: 0x8fffal2dd24123fd
Virgi

nia
[T]Tech
@

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 5/&8

Address space and memory descriptor Address space

Address space and memory descriptor
Address space (3)

» Interval of addresses that the process has the right to access:
virtual memory areas (VMAS)

» VMAs can be dynamically added or removed to the process
address space
» VMAs have associated permissions: read, write, execute

» When a process try to access an address outside of valid VMAs, or
access a VMA with wrong permissions: segmentation fault

» VMASs can contain:

» Mapping of the executable file code (text section)
Mapping of the executable file initialized variables (data section)
Mapping of the zero page for uninitialized variables (bss section)
Mapping of the zero page for the user-space stack

Text, data, bss for each shared library used

Memory-mapped files, shared memory segment, anonymous
mappings (used by malloc)

vV VvV VY VvYy

VB ech
L

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 6/35

Address space and memory descriptor Address space

Address space and memory descriptor
Address space (4)

Virtual Memory Area
represented by a
vm_area_struct object
-

text | data bss heap» « mmap « stack

A
A J

Address space defined by amm_struct ohject

VB ech
L

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 7135

Address space and memory descriptor Memory descriptor

Address space and memory descriptor

Memory descriptor

» The kernel represent a process address space through a struct
mm_struct object, the memory descriptor

» Defined in include/linux/mm_types.h

» Interesting fields:

1| struct mm_struct {

2 struct vm_area_struct xmmap;

&) struct rb_root mm_rb;

4| pgd_t *pgd;

5} atomic_t mm_users;

6 atomic_t *mm_count ;
7 int map_count;
8 struct rw_semaphore mmap_sem;

9 spinlock_t page_table_lock;
10 struct list_head mmlist;

11 unsigned long start_code;
12 unsigned long end_code;
13 unsigned long start_data;
14 unsigned long end_data;
15| /> ... */

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

list of VMAs x/

rbtree of VMAs */

page global directory x*/
address space users */
primary usage counters x/
number of VMAs */

VMA semaphore */

page table lock */

list of all mm_struct x/
start address of code */
end address of code x/
start address of data */
end address of data x/

Pierre Olivier (SSRG@VT, LKP - Process Address Space

March 30, 2017

Vhpﬂﬁléi
@

8/35

Address space and memory descriptor Memory descriptor

Address space and memory descriptor

Memory descriptor (2)

/*...*/
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
unsigned long
spinlock_t
/*.44*/

start_brk;
end_brk;
start_stack;
arg_start;
arg_end;
env_start;
total_vm;
locked_vm;
flags;
ioctx_lock;

/* start address of heap */
/* end address of heap */

/*
/*
/*
/*
/*
/*
/*
/*

start address of stack */
start of arguments x/

end of arguments x*/

start of environment x*/

total pages mapped */

number of locked pages */
architecture specific data */
Asynchronous I/O list lock */

» mm_users: humber of processes (threads) using the address

space

» mm_count: reference count:
» +1 ifmm_users >0
» +1 if the kernel is using the address space
» When mm_count reaches 0, the mm_st ruct can be freed

Pierre Olivier (SSRG@VT)

LKP - Process Address Space March 30, 2017

Vhpﬂﬁléi
@

9/35

Address space and memory descriptor Memory descriptor

Address space and memory descriptor
Memory descriptor (3)

» mmap and mm_rb are respectively a linked list and a tree
containing all the VMAs in this address space
» List used to iterate over all the VMAs
» Links all VMAs sorted by ascending virtual addresses
» Tree used to find a specific VMA
» All mm_struct are linked together in a doubly linked list
» Through the mm1ist field if the mm_struct

VB ech
L

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 10/35

Address space and memory descriptor Memory descriptor allocation

Address space and memory descriptor

Memory descriptor allocation

» A task memory descriptor is located in the mm field of the
corresponding task_struct
» Current task memory descriptor: current->mm
» During fork (), copy-mm () is making a copy of the parent
memory descriptor for the child
> copy-mm () calls dup-mm () which calls allocate.mm () — allocates
amm_struct object from a slab cache
» Two threads sharing the same address space have the mm field of
their task_struct pointing to the same mm_struct object
» Threads are created using the CLONE_vM flag passed to clone () —
allocate_mm () is not called
> in copy.mm():

L — 8 oto good_mm;

2| struct mm_struct *oldmm; 9|} g geeeiy

3| oldmm = current->mm;
10| /% ... */

| /1% coo 2 11| good_mm:

5| if (clone_flags & CLONE_VM) ({ i g o

6 atomic_inc (&0ldmm->mm_users) ; s Tech
13| return 0;

7 mm = oldmm;

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 11/35

Address space and memory descriptor Memory descriptor destruction

Address space and memory descriptor

Memory descriptor destruction

» When a process exits, do_exit () is called
» ltcalls exit mm()

>
>

1
2
3
4
5
6
7

|

>

Performs some housekeeping/statistics updates
Calls mmput ()

void mmput (struct mm_struct xmm)
{
might_sleep () ;

if (atomic_dec_and_test (&mm->mm_users))
__mmput (mm) ;
}

mmput () decrements the users field and calls __mmput () if it
reaches 0

_mmput () calls mmdrop (), that decrements the count field, and
calls _mm_drop () if it reaches 0

_mmdrop () calls free_mm () which return the memory for the

mm_struct () to the slab cache (i.e. free) vigna,

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 12/35

Address space and memory descriptor Memory descriptor and kernel threads

Address space and memory descriptor

Memory descriptor and kernel threads

Process 1 [
address space

User
address space

User
address space

Process 2 [k
address space

Kthread 1 [
address space

» Kernel threads do not have a user-space address space

» mm field of a kernel thread task_struct is NULL

» However they still need to access the kernel address space

» When a kernel thread is scheduled, the kernel notice its mm is NULL
so it keeps the previous address space loaded (page tables)

» Kernel makes the active_mm field of the kernel thread to point on
the borrowed mm_struct Vigiia

» OK because kernel part is the same in all address spaces gt

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 13/35

Virtual Memory Area

Outline

(@ Virtual Memory Area

[T Tech
@

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 14 /35

Virtual Memory Area vm-area-srtuct

Virtual Memory Area

vm_area._srtuct

» Each VMA is represented by an object of type vm_area_struct

» Defined in include/linux/mm_types.h
» Interesting fields:

1| struct vm_area_struct {
2 struct i mm_struct *vm_mm; /* associated address space (mm_struct) =*/
3 unsigned long vm_start; /* VMA start, inclusive */
4 unsigned long vm_end; /* VMA end, exclusive */
5] struct vm_area_struct *vm_next; /* list of VMAs x/
6 struct vm_area_struct *VIN_prev; /* list of VMAs x/
7 pgprot_t vm_page_prot; /* access permissions */
8 unsigned long vm_flags; /* flags */
9 struct rb_node vm_rb; /* VMA node in the tree */
10 struct list_head anon_vma_chain; /* list of anonymous mappings */
1 struct anon_vma *anon_vma; /* anonmous vma object */
12 struct vm_operation_struct *vm_ops; /* operations x/
13 unsigned long vm_pgoff; /* offset within file */
14 struct file «vm_file; /* mapped file (can be NULL) */
15 void «vm_private_data; /* private data */
16 /x ... %/
171}
th
G
Pierre Olivier (: LKP - Process Address Space March 30, 2017 15 /35

Virtual Memory Area

Virtual Memory Area

vm_area_srtuct (2)

» The VMA exists over [vm_start, vm_end][inthe corresponding
address space

» Address space is pointed by the vm_mm field (of type mm_st ruct)
» Size in bytes: vm_end - vm_start
» Each VMA is unique to the associated mm_struct

» Two processes mapping the same file will have two different
mm_struct objects, and two different vim_area_struct objects

» Two threads sharing a mm_st ruct object also share the
vm_area_struct objects

VB ech
L

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 16/35

Virtual Memory Area

Virtual Memory Area
Flags

» Flags specify properties and information for all the pages

contained in the VMA

> VM_READ: pages can be read from
» VM_WRITE: pages can be written to

> VM_EXEC: code inside pages can be
executed

» VM_SHARED: pages are shared
between multiple processes (if
unset the mapping is private)

» VM_MAYREAD: the VM_READ flag can
be set

» VM MAYWRITE: the VM_WRITE flag
can be set

> VM_MAYEXEC: the VM_EXEC flag can
be set
Pierre Olivier (SSRG@VT)

LKP - Process Address Space

> VM_MAYSHARE: the VM_SHARED flag

can be set

VM_GROWSDOWN: area can grow
downwards

VM_GROWSUP: area can grow
upwards

» VM_SHM: area can be used for

shared memory

> VM_DENYWRITE: area maps an

unwritable file

> VM_EXECUTABLE: area mapsS viginia

. [T Tech
an executable file i

March 30, 2017 17 /35

Virtual Memory Area

Virtual Memory Area
Flags (2)

» VM_LOCKED: the area pages are » VM_DONTCOPY: area will not be
locked (will not be swapped-out) copied upon fork ()

» VM_IO: the area maps a device IO » VM_DONTEXPAND: area cannot grow
space through mremap ()

» VM_SEQ_READ: pages in the area » VM_ACCOUNT: area is an accounted
seem to be accessed sequentially VM object

» VM_RAND_READ: pages seem to be > VM_HUGETLB: area uses hugetlb
accessed randomly pages

Virg

nia
[T]Tech
@

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 18/35

Virtual Memory Area

Virtual Memory Area
Flags (3)

» Combining VM_READ, VM WRITE and VM_EXEC gives the
permissions for the entire area, for example:
» Object code is VM_READ and VM_EXEC
» Stack is VM_READ and VM_WRITE

» VM_SEQ_READ and VM_RAND_READ are set through the
madvise () system call
» Instructs the file pre-fetching algorithm read-ahead to increase or
decrease its agressivity

» VM_HUGETLB indicates that the area uses pages larger than the
regular size
» 2M and 1G on x86
» Smaller page table — good for the TLB
» Less levels of page tables — faster address translation

VB ech
L

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 19/35

Virtual Memory Area VMA operations

Virtual Memory Area
VMA operations

» vm_ops iN vm_area_struct points to a vm_operations_struct
object

» Contains function pointers to operate on a specific VMAs
» Defined in include/linux/mm.h

1| struct vm_operations_struct {

2 void (xopen) (struct vm_area_struct x area);

3] void (*close) (struct vm_area_struct x area);

4 int (xfault) (struct vm_area_struct *vma, struct vm_fault *vmf);

5] int (*page_mkwrite) (struct vm_area_struct xvma, struct vm_fault *vmf);
6

7

[* ... %/

VB ech
L

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 20/35

Virtual Memory Area VMA operations

Virtual Memory Area
VMA operations (2)

» Function pointers in vm_operations_struct:

» open () : called when the area is added to an address space

» close (): called when the area is removed from an address space

» fault (): invoked by the page fault handler when a page that is
not present in physical memory is accessed

» pagemkwrite (): invoked by the page fault handler when a
previously read-only page is made writable

» Description of all operations in include/linux/mm.h

Vi ek
L

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 21/35

Virtual Memory Area VMAs

Virtual Memory Area
VMAs in real life

» From userspace, one can observe the VMAs map for a given
process:
» cat /proc/<pid>/maps

pierre@bulbi: ~

pierregbulbi: ~% cat /proc 743/ s
55 5592355ef000 r- 00000088 6 20212055
7ef 08000088 § 20212055
08001080 5 208212055
00000000
08000088
ge1bdese
ge1bdese J ¥
BO1c1B60 A8 B6 2 1 / _64-Linux-gnuf
00000080

86_64- Linux-anu/

64-1linux-anu/
34- Linux-agnu/

pierre@bulbi. ~%

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 22/

Virtual Memory Area VMAs in real life

Virtual Memory Area
VMAs in real life (2)

» /proc/<pid>/maps columns description:
@ Address range
@ Permissions
@ Start offset of file mapping
@ Device containing the mapped file
@& Mapped file inode number
@® Mapped file pathname

» Can also use the command pmap <pid>

Vugl?ial Tech
@

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 23/35

VMA manipulation

Outline

@ VMA manipulation

[T Tech
@

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 24 /35

VMA manipulation Finding a VMA

VMA manipulation

Finding a VMA

» find_ vma (): used to find a VMA in which a specific memory
address resides
» Prototype in include/linux/mm.h:

1| struct vm_area_struct *find_vma (struct mm_struct *mm, unsigned long addr); ‘

» Defined in mm/mmap. c:

15 tmp = rb_entry(rb_node, struct
1| struct vm_area_struct *find_vma (struct T
mm_struct *mm, unsigned long addr) 16 - - ! -
2| { .
17 £ (tmp—> d > add
&) struct rb_node *rb_node; 18 * vriami tr\;mjen aeklz) {
4 struct vm_area_struct xvma; 19 if (tmpfs\,/m SearE <= Ak
2 /% Check th he first. %/ & L
ee € cacle LESE. 21 rb_node = rb_node->rb_left;
7 vma = vmacache_find (mm, addr); 20 b ailes
8 5 (Uil (o))) 23 rb_node = rb_node->rb_right;
9 return vma;
24 }
10 o5
1 rb_node = mm->mm_rb.rb_node; .
12 26 if (vma)
27 2
13 cfile (e mese) [vmacache_update (addr, wvma) ;
14 o o . 28 return vma;
struct vm_area_struct *tmp; 29| ech

Pierre Olivier (: G@VT) LKP - Process Address Space March 30, 2017 25/35

VMA manipulation Finding a VMA

VMA manipulation

Finding a VMA (2)

» find_vma_prev (): returns in addition the last VMA before a
given address

» include/linux/mm.h:

struct vm_area_struct xfind_vma_prev (struct mm_struct mm, unsigned long addr,
struct vm_area_struct xxpprev);

» find vma_intersection (): returns the first VMA overlapping
a given address range

» include/linux/mm.h:

static inline struct vm_area_struct * find_vma_intersection (struct mm_struct =
mm, unsigned long start_addr, unsigned long end_addr)

2| 1

3 struct vm_area_struct x vma = find_vma (mm, start_addr) ;

4

5 if (vma && end_addr <= vma->vm_start)

6 vma = NULL;

7 return vma;

8|} Virginia
[T]Tech
@

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 26 /35

VMA manipulation Creating an address interval

VMA manipulation

Creating an address interval

» do_mmap () is used to create a new linear address interval:
» Can result in the creation of a new VMAs

» Or a merge of the create area with an adjacent one when they have
the same permissions

» include/linux/mm.h:

extern unsigned long do_mmap (struct file xfile,
2 unsigned long len,
3

unsigned long addr,
unsigned long prot, unsigned long flags,
vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);

» Caller must hold mm->mmap_sem (RW semaphore)

» Maps the file £ile in the address space at address addr for
length 1en. Mapping starts at offset pgof £ in the file
» prot specifies access permissions for the memory pages:
» PROT_READ, PROT_WRITE, PROT_EXEC, PROT_NONE

Vi ek
L

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 27/35

VMA manipulation Creating an address interval

VMA manipulation

Creating an address interval (2)

» flags specifies the rest of the VMA options:

» MAP_SHARED: mapping can be

shared » MAP_EXECUTABLE: corresponds to
» MAP_PRIVATE: mapping cannot be VM. EXECUTABLE
shared » MAP_LOCKED: corresponds to
» MAP_FIXED: created interval must VM_LOCKED
start at addr > MAP_NORESERVE: NO space
» MAP_ANONYMOUS: mapping is not reserved for the mapping
file-backed > MAP_POPULATE: populate (default)
» MAP_GROWSDOWN: corresponds to page tables
VM_GROWSDOWN » MAP_NONBLOCK: do not block
» MAP_DENYWRITE: corresponds to on |0
VM_DENYWRITE Ve ecn

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 28/35

VMA manipulation Creating an address interval

VMA manipulation

Creating an address interval (3)

» On error do_mmap () returns a negative value
» On success:

» The kernel tries to merge the new interval with an adjacent one
having same permissions

» Otherwise, create a new VMA

» Returns a pointer to the start of the mapped memory area

» do_mmap () is exported to user-space through mmap2 ()

1| void *mmap2 (void xaddr, size_t length, int prot, int flags, int fd, off_t pgoffset);

VB ech
L

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 29/35

VMA manipulation Removing an address interval

VMA manipulation

Removing an address interval

» Removing an address interval is done through do_munmap ()

» include/linux/mm.h:

1

int do_munmap (struct mm_struct *, unsigned long, size_t);

» 0 returned on success

» Exported to user-space through munmap () :

1

int munmap (void xaddr, size_t len);

VB ech
L

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 30/35

Page tables

Outline

@ Page tables

[T Tech
@

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 31/35

Page tables Presentation

Page tables

Presentation

» Linux enables paging early in the boot process
» All memory accesses made by the CPU are virtual and
translated to physical addresses through the page tables
» Linux set the page tables and the translation is made automatically
by the hardware (MMU) according to the page tables content

» The address space is defined by VMAs and is sparsely populated
» One address space per process — one page table per process
» Lots of "empty” areas
» Defining the page table as a single static array is a huge waste
of space
» A hierarchical tree structure is used

VB ech
L

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 32/35

Page tables Page table setup

Page tables

Page table setup (2)

Setting up the page table is performed by the kernel

0x1234 o
’/V —
Cr3 CPU
register A\
\ \
Y
ox1234 /
.
PGD:
Page
Global
Directory
PUD: PMD: PTE:
Page Page Page)
Upper Middle Table ng}?l"all"ech
Directory Directory Entry e

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 BE)SS

Page tables Address translation

Page tables

Address translation

» Address translation is performed by the hardware

cr3

y PGD PUD PMD PTE

7

=

» More info on page tables and memory management: [2, 1] "ffjza

Virtual memory address

A

[
'

Pierre Olivier (SSRG@VT) LKP - Process Address Space March 30, 2017 34/35

Bibliography

Bibliography |

[1] Four-level page tables.
https://lwn.net/Articles/106177/.
Accessed: 2017-03-25.

[2] GORMAN, M.

Understanding the Linux virtual memory manager.
Prentice Hall Upper Saddle River, 2004.
Accessed: 2017-03-25.

[T Tech
@

Pierre Olivier (SSRG@VT, LKP - Process Address Space March 30, 2017 35/35

https://lwn.net/Articles/106177/

	Address space and memory descriptor
	Address space
	Memory descriptor
	Memory descriptor allocation
	Memory descriptor destruction
	Memory descriptor and kernel threads

	Virtual Memory Area
	vm_area_srtuct
	Flags
	VMA operations
	VMAs in real life

	VMA manipulation
	Finding a VMA
	Creating an address interval
	Removing an address interval

	Page tables
	Presentation
	Page table setup
	Address translation

