
Linux Kernel Programming
Flash Memory and Embedded Flash Management in Linux

Pierre Olivier

Systems Software Research Group @ Virginia Tech

April 6, 2017

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 1 / 48



Outline

1 Flash memory: general presentation

2 Flash constraints and limitation

3 Constraints management

4 Embedded flash management with Linux

5 Conclusion

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 2 / 48



Flash memory: general presentation

Outline

1 Flash memory: general presentation

2 Flash constraints and limitation

3 Constraints management

4 Embedded flash management with Linux

5 Conclusion

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 3 / 48



Flash memory: general presentation Flash usage in computer systems

Flash memory: general presentation
Flash usage in computer systems

I Some benefits: storage density (small size), shock resistance, low
power consumption

I Flash is the main secondary storage media in embedded
systems

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 4 / 48



Flash memory: general presentation Flash usage in computer systems

Flash memory: general presentation
Flash usage in computer systems (2)

I Solid-state drives: “disks” based on flash memory
I High performance compared to hard disk drives

I SSD are now widely used in:
I Datacenters: HPC, big data processing, etc.
I Laptops, regular desktop PCs

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 5 / 48



Flash memory: general presentation Flash & semiconductor memories

Flash memory: general presentation
Flash & semiconductor memories

I Flash is a non-volatile memory
I Flash is a sub-type of EEPROM memory

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 6 / 48



Flash memory: general presentation Flash memory types

Flash memory: general presentation
Flash memory types: NOR flash

I Flash memory types are named from the logic gate used for their
design

I NOR flash
I High cost/bit, low density

I low capacity
I Random access (i.e. byte granularity)
I Fast reads, slow writes
I XIP: eXecute In Place

I Code in NOR flash can be directly executed without going through the
RAM

I Used in motherboards BIOS, device firmwares, etc.
I NOR is not the topic of these slides

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 7 / 48



Flash memory: general presentation Flash memory types

Flash memory: general presentation
Flash memory types: NAND flash

I NAND flash
I Low cost per bit, high storage density

I Used for secondary storage
I Block level access

I Chunks of bytes, no random access
I Good and balanced read/write performance
I In this lecture we focus on NAND flash

I Other types less popular, mostly used in embedded systems [1]

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 8 / 48



Flash memory: general presentation Flash memory types

Flash memory: general presentation
Flash memory types: NAND vs NOR

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 9 / 48



Flash memory: general presentation Technology and micro-architecture

Flash memory: general presentation
Technology and micro-architecture: floating gate transistor

I Floating gate transistor gives to flash its non-volatile property

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 10 / 48



Flash memory: general presentation Technology and micro-architecture

Flash memory: general presentation
Technology and micro-architecture: NAND micro-architecture

I Transistors are assembled in
serial in NAND flash: it is
accessed by blocks

I One NAND flash cell can
store:

I 1 bit: Single-Level Cell
(SLC)

I 2 bits: Multi-Level Cell
(MLC)

I 3 bits: Triple-Level Cell
(TLC)

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 11 / 48



Flash memory: general presentation Technology and micro-architecture

Flash memory: general presentation
Technology and micro-architecture: NAND micro-architecture (2)

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 12 / 48



Flash memory: general presentation Technology and micro-architecture

Flash memory: general presentation
Technology and micro-architecture: NAND micro-architectural characteristics

Architectural characteristic Values among chip models
Flash page size from 512 (+16 OOB) to

8192 (+128 OOB), power of two
Number of pages per block 32 or 64 or 128
Number of blocks per plane 1024 or 2048 or 4096
Number of planes per chip 1 or 2 or 4
I/O bus width 8 or 16 bits

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 13 / 48



Flash memory: general presentation Technology and micro-architecture

Flash memory: general presentation
Technology and micro-architecture: SSD internals

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 14 / 48



Flash memory: general presentation Operations

Flash memory: general presentation
Operations

I A NAND flash chip supports 3 main
operations called legacy operations

I Page read: ∼30 µs + IO for SLC,
∼30 to 100 µs + IO for MLC

I Page write: IO + ∼200 µs (SLC), IO
+ ∼300 to 2000 µs (MLC)

I Block erase: 500 to 2000 µs (SLC),
∼3000 µs (MLC)

I Legacy vs advanced operations:
I Cache mode, copy-back,

multi-plane/chip/channels

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 15 / 48



Flash constraints and limitation

Outline

1 Flash memory: general presentation

2 Flash constraints and limitation

3 Constraints management

4 Embedded flash management with Linux

5 Conclusion

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 16 / 48



Flash constraints and limitation Presentation

Flash constraints and limitation
Presentation

I Specific constraints in flash memory operation

1 Erase-before-write rule
2 Flash wear
3 Reliability
4 Plus special constraints on advanced operations

Leads to the presence of specific flash constraints management
systems in flash-based storage subsystems

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 17 / 48



Flash constraints and limitation Presentation

Flash constraints and limitation
Presentation

I Specific constraints in flash memory operation

1 Erase-before-write rule
2 Flash wear
3 Reliability
4 Plus special constraints on advanced operations

Leads to the presence of specific flash constraints management
systems in flash-based storage subsystems

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 17 / 48



Flash constraints and limitation The erase-before-write rule

Flash constraints and limitation
The erase-before-write rule

I Erase-before-write rule:
I It is not possible to perform a

write operation in a page that
already contains data

I The page first needs to be erased→
issues arise:

I Target of the erase operation is an
entire block!

I Erase operation takes time!
I Write/erase operations are

asymmetrical

Flash: no in-place data updates
(overwrites)

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 18 / 48



Flash constraints and limitation Flash wear

Flash constraints and limitation
Flash wear

I Flash wears with usage: a block can only sustain a limited
number of erase operations

I Once a given threshold is reached the block cannot contain data
anymore: it is called a bad block

I Bad block appear during flash lifetime
I Some bad blocks are also present when the chip comes out of the

factory
I Threshold:

I SLC: 100 000 erase operations
I MLC: 10 000 erase operations
I TLC: 5 000 erase operations

I SLC vs MLC/TLC: trade-off performance/endurance/capacity

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 19 / 48



Flash constraints and limitation Reliability

Flash constraints and limitation
Reliability

I Due to the technology and the high voltages applied to the
memory cells during operation:

I Bitflips occur on data read/written on flash, as well as adjacent
on-flash data

I Error rate is higher in MLC/TLC than in SLC
I To reduce the frequency of errors, pages should (SLC) or must

(MLC/TLC) be written sequentially within the containing block
I Retention is generally 5 to 10 years

I Can go down to 1 year for chips with high number of write/erase
cycles

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 20 / 48



Constraints management

Outline

1 Flash memory: general presentation

2 Flash constraints and limitation

3 Constraints management

4 Embedded flash management with Linux

5 Conclusion

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 21 / 48



Constraints management Presentation

Constraints management
Presentation

Constraints summary
I Erase-before-write
I Wear
I Reliability

I Constraints are dealt with in flash-based storage subsystems with
so-called flash management systems

I These system abstract the constraints from the upper layers
(user/programmer)

I Allow using flash in computer systems

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 22 / 48



Constraints management Managing the erase-before-write rule

Constraints management
Managing the erase-before-write rule

I Erase-before-write: no in-place updates
I The programmer still expects the capability to perform overwrites

on stored data independently of the storage media
I Solution: out-of-place data updates through logical to

physical mapping
I Logical addresses are viewed by the programmer
I Physical addresses are actual flash pages/blocks

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 23 / 48



Constraints management Managing the erase-before-write rule

Constraints management
Managing the erase-before-write rule

I States for a page: free, used (valid), used (invalid)

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 24 / 48



Constraints management Managing the erase-before-write rule

Constraints management
Managing the erase-before-write rule

I Flash management systems implement a garbage collector to
recycle invalid pages into free space

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 25 / 48



Constraints management Managing the erase-before-write rule

Constraints management
Managing the erase-before-write rule (2)

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 26 / 48



Constraints management Wear leveling

Constraints management
Wear leveling (3)

I Victim block selection policy:
I Greedy: choose the bloc containing the largest amount of invalid

pages
I Good performance as this minimizes the amount of still valid data

recopy
I Does not take the flash wear into account

I Cost/benefit: computes a score for each block:
Estimation of the current wear for the concerned block

Number of invalid pages in the concerned block

I Wear can be estimated through erase counters, usage frequency,
time since the last use

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 27 / 48



Constraints management Wear leveling

Constraints management
Wear leveling: example

Metric System A System B
Total number of erase operations 122 104
Average value of per-block erase counters 12.2 10.4
Standard deviation of the erase 10.8 1.07
counter distribution
Erase counter difference between 39 3
the most and the less erased block

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 28 / 48



Constraints management Bad blocks management

Constraints management
Bad blocks management

I Bitflips are handled with error correcting
code (ECC)

I Detect and correct bitflips
I Page data hash stored in OOB area
I ECC types used:

I SLC: Hamming - 2 detection/1 correction
per page, simple implementation

I MLC/TLC: Reed-Solomon,
Bose-Chaudhuri-Hocquenghem - detect
and correct several errors per page,
implementation more complex

I ECC implemented in software (OS/driver) or in hardware
(dedicated circuit in the flash device controller)

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 29 / 48



Constraints management Conclusion

Constraints management
Conclusion

I Erase-before-write rule
I Solved by performing out-of-place updates

I Implies logical to physical address translation
I Implies the introduction of the invalid state for a page, and the

implementation of a garbage collector
I Flash wear

I Solved with wear-leveling policies
I Reliability (bitflips):

I Solved through the use of error-correcting codes

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 30 / 48



Embedded flash management with Linux

Outline

1 Flash memory: general presentation

2 Flash constraints and limitation

3 Constraints management

4 Embedded flash management with Linux

5 Conclusion

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 31 / 48



Embedded flash management with Linux Flash Translation Layer vs Flash File Systems

Embedded flash management with Linux
Flash Translation Layer vs Flash File Systems

I Two main classes of flash management systems:
1 Flash Translation Layer

I SSDs, SD/MMC cards, USB flash drives
I Hardware-based solution implemented in the device controller

2 Flash File Systems
I Mostly used in embedded systems: smartphones, tablets, etc
I Software solution

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 32 / 48



Embedded flash management with Linux Flash Translation Layer vs Flash File Systems

Embedded flash management with Linux
Flash Translation Layer vs Flash File Systems (2)

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 33 / 48



Embedded flash management with Linux Flash File Systems

Embedded flash management with Linux
Flash File Systems: Presentation

I Pure software-based solution
I FFS implemented as a filesystem in the OS code

I FFS used to manage raw/bare flash chip
I Directly soldered on the motherboard
I Mostly present in embedded systems

I Roles:
I Manage flash constraints
I Manage embedded constraints
I Manage regular filesystem operations

I Linux supports the most popular FFS:
I JFFS2, UBIFS, YAFFS2

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 34 / 48



Embedded flash management with Linux Flash File Systems

Embedded flash management with Linux
Flash File Systems: Roles

I Flash constraints management:
I Address translation
I Wear leveling
I Error correcting code processing implemented in the Linux NAND

driver
I Address translation:

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 35 / 48



Embedded flash management with Linux Flash File Systems

Embedded flash management with Linux
Flash File Systems: Roles (2)

I Embedded constraints:
I Limited resources (CPU power, RAM capacity)
I Unclean unmount tolerance (ex: power cut):

I Journaling, log-based structures, atomic operations
I FFS scalability with the managed flash space size:

I Crucial metrics:
I Mount time
I RAM footprint

I Linear vs logarithmic evolution

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 36 / 48



Embedded flash management with Linux Flash File Systems

Embedded flash management with Linux
Flash File Systems: scalability

I RAM footprint of JFFS2 and UBIFS according to the managed
flash size

Source:
http://elinux.org/Flash_Filesystem_Benchmarks_Kernel_Evolution

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 37 / 48

http://elinux.org/Flash_Filesystem_Benchmarks_Kernel_Evolution


Embedded flash management with Linux FFS integration in Linux

Embedded flash management with Linux
FFS integration in Linux

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 38 / 48



Embedded flash management with Linux FFS integration in Linux

Embedded flash management with Linux
FFS integration in Linux: The Virtual File System

I The Virtual File System (VFS)
I Abstraction layer for all filesystems supported by Linux

I Maintains a cache of file data, the page cache
I All file accesses are buffered as long as there is some free RAM

I Some mechanisms associated with the page cache:
I Read-ahead: data pre-fetching during read operations
I Page cache write-back: buffer writes in RAM, and postpone them

to absorb temporal locality

I Both of these topics (VFS & page cache) will have a dedicated
lecture session

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 39 / 48



Embedded flash management with Linux FFS integration in Linux

Embedded flash management with Linux
FFS integration in Linux: Memory Technology Device, the embedded flash driver

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 40 / 48



Embedded flash management with Linux FFS integration in Linux

Embedded flash management with Linux
FFS integration in Linux: FFS implementation: JFFS2

I JFFS2 integrated in the kernel mainline in 2001 (Linux 2.4.10)
I Relatively mature and stable

I Each modification to the filesystem is packed in a node written
(synchronously) on flash

I Nodes are indexed with a table
I The entire managed flash partition is scanned at mount time to

rebuild the table→ 15 min. to mount a 1GB partition
I Linear scalability

I Garbage collection uses lists of blocks with different states
I Victims are blocks with large amount of invalid data
I Wear leveling: 1 time upon 100, victim is a fully valid block
I GC launched when free space is low, as well as in the background

through a kernel thread

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 41 / 48



Embedded flash management with Linux FFS integration in Linux

Embedded flash management with Linux
FFS integration in Linux: FFS implementation: JFFS2 (2)

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 42 / 48



Embedded flash management with Linux FFS integration in Linux

Embedded flash management with Linux
FFS integration in Linux: FFS implementation: YAFFS2

I YAFFS2 dates from 2002
I Extensively used in Android up to 2011/2012
I File data is divided into chunks

I Fixed size: the size of one underlying flash page
I Table is used for chunk indexation→ linear scalability

I YAFFS is not
directly present
in the kernel
mainline

I Can be easily
integrated
through a
patch

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 43 / 48



Embedded flash management with Linux FFS integration in Linux

Embedded flash management with Linux
FFS integration in Linux: FFS implementation: UBIFS

I UBIFS integrated in Linux mainline in 2008 (2.6.27)
I Nodes indexation is done through a tree that is stored in flash

I Only a subset of the tree is cached in RAM, brought on-demand
I logarithmic scalability
I Because there is no in-place updates on physical flash, the tree

moves: wandering tree

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 44 / 48



Embedded flash management with Linux JFFS2 vs YAFFS2 vs UBIFS

Embedded flash management with Linux
JFFS2 vs YAFFS2 vs UBIFS

Feature JFFS2 YAFFS2 UBIFS
Supported flash memory type NOR, NAND NAND NOR, NAND
Virtual device type used MTD MTD UBI (on MTD)
File indexing structure Table Table (Wandering) tree
Compression algorithms LZO, Zlib, Rtime None LZO, Zlib
supported
Mount time scalability Linear Linear Linear (UBI)
Memory footprint scalability Linear Linear Logarithmic
Integration in Linux mainline Yes No (patch) Yes

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 45 / 48



Conclusion

Outline

1 Flash memory: general presentation

2 Flash constraints and limitation

3 Constraints management

4 Embedded flash management with Linux

5 Conclusion

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 46 / 48



Conclusion

Conclusion

I NAND flash memory
I Since a long time the main storage media in embedded systems
I Widely present in servers, HPC, but also desktop/laptop computers

(SSDs)
I Specific constraints:

1 Erase-before-write
2 Flash wear
3 Reliability

I Leads to specific and complex management systems
I Flash Translation Layer
I Flash File Systems

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 47 / 48



Bibliography

Bibliography I

[1] HIDAKA, H.
Evolution of embedded flash memory technology for mcu.
In 2011 IEEE International Conference on IC Design Technology (May 2011), pp. 1–4.

Pierre Olivier (SSRG@VT) LKP - Flash Memory April 6, 2017 48 / 48


	Flash memory: general presentation
	Flash usage in computer systems
	Flash & semiconductor memories
	Flash memory types
	Technology and micro-architecture
	Operations

	Flash constraints and limitation
	Presentation
	The erase-before-write rule
	Flash wear
	Reliability

	Constraints management
	Presentation
	Managing the erase-before-write rule
	Wear leveling
	Bad blocks management
	Conclusion

	Embedded flash management with Linux
	Flash Translation Layer vs Flash File Systems
	Flash File Systems
	FFS integration in Linux
	JFFS2 vs YAFFS2 vs UBIFS

	Conclusion

