
Linux Kernel Programming
RCU

Sang-Hoon Kim

Systems Software Research Group @ Virginia Tech

April 15, 2017

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 1 / 34

Who are you?

Sang-Hoon Kim
I Ph.D. in Computer Science, Aug. 2016

I Korea Advanced Institute of Science and Technology (KAIST),
South Korea

I Application-aware Memory Management for Mobile Devices
I Postdoctoral Associate since Nov. 2016
I Interested in system software

I Distributed systems, memory systems, storage systems, mobile
systems

I Working on the Popcorn Linux project

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 2 / 34

Outline

1 Why RCU?

2 What is RCU?

3 How to use RCU

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 3 / 34

Why RCU?

Outline

1 Why RCU?

2 What is RCU?

3 How to use RCU

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 4 / 34

Why RCU?

Once upon a time ...
Why RCU?

I Single-core era (1990s)
I Improve the performance by putting more transistors
I Towards multi-issue super-scalar architectures
I Diminishing returns in performance, emit more heat

At this rate, Intel processors will soon be producing
more heat per square centimeter than the surface of the Sun!

“Discovering Multi-core: Extending the Benefit
of Moore’s Law”, Geoff Koch[2].

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 5 / 34

Why RCU?

Once upon a time ...
Why RCU?

I Multi-core era
I High-core count machines become common
I Hyper-threading technology doubles the number of effective cores
I Intel Xeon E5-2620v4 : 8/16 cores
I Intel Xeon Phi 7210 : 64/256 cores
I Cavium Thunder-X : 96 cores

Intel Skylake Intel Knights Landing

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 6 / 34

Why RCU?

Contention matters
Why RCU?

I Contention between contexts becomes the matter
I Each core can serve a system call
I Interrupt handlers can preempt the execution
I Regular kernel code can be preemptible now

I Can you guarantee no lock is held at any moment?
I Hard to detect/reproduce deadlocks

I Eummmmmm... Ok, let’s go with coarse-grained locks

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 7 / 34

Why RCU?

Contention matters
Why RCU?

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 8 / 34

Why RCU?

Contention matters
Why RCU?

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 9 / 34

Why RCU?

Recap: Synchronization primitives

I Protect shared data from concurrent access

I Non-sleeping
I Atomic operations
I Spinlock
I Reader-writer spinlock
I Sequential lock

I Sleeping
I Mutex
I Semaphore
I Completion
I Wait queue
I ...
I might sleep();

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 10 / 34

Why RCU?

Case: spinlock

Time

Lock requested

Granted

Release

t1

t3

t2

t4

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 11 / 34

Why RCU?

Case: Reader-writer lock

Time

Lock requested

Granted

Release

r1

w1

r2

r3

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 12 / 34

Why RCU?

Case: Sequential lock

0

0

Time

Lock requested

Granted

Release

r1

w1

r2

r3

2

2

1 2

2

3 4

4

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 13 / 34

Why RCU?

To sum up

I Spinlock
I Allow one instance at a time
I + Simple, good for short critical sections
I - Spinning costs time and energy

I Reader-writer locks
I Multiple readers and a writer are exclusive
I + Applicable to many common cases
I - Writer might have to wait for a long time

I Sequential lock
I + Optimized for non-contending common case
I - Biased too much to writes
I - Not for busy critical sections
I - Not for idempotent operations

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 14 / 34

What is RCU?

Outline

1 Why RCU?

2 What is RCU?

3 How to use RCU

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 15 / 34

What is RCU? Introduction

What is RCU?
Introduction

I “Read-Copy Update”
I A synchronization mechamisn added to v2.5.43 in October 2002
I Improve the scalability of the kernel
I Low-overhead and wait-free in read side

I Readers can be overlapped
I Writers can be serialized without blocking reads.

I No deadlock between readers and writer
I No lock is required

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 16 / 34

What is RCU? Introduction

Basic concepts
What is RCU?

I Publish a pointer to protect it with RCU
I Subscribe to dereference the value of the RCU-protected pointer
I Replace the entry to update it
I Retract if the pointer is no longer in use

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 17 / 34

What is RCU? Introduction

Use case
What is RCU?

I Read
I Subscribe to a RCU-protected pointer
I End the subscription

I Update
I Save the pointer to an old structure
I Create a new structure
I Copy the data from the old structure into the new one
I Modify the new copied structure (yes, that′s copy update)

I Replace the old pointer to the new structure
I Wait until no reader lefts using the old structure

I Or, delegate the deallocation
I Deallocate the old structure

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 18 / 34

What is RCU? Introduction

Grace period
What is RCU?

[1]

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 19 / 34

What is RCU? Introduction

Grace period
What is RCU?

I Actual deallocation can be done only when all readers opened at
the removal moment are closed

I Incur some memory overhead
I Readers might see different values at a moment

I Q: What if a reader is blocked?

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 20 / 34

What is RCU? Introduction

Under the hood
What is RCU?

I Observe the time sequenece of publication, subscription, and
replacement

I Maintains multiple versions of recently updated objects
I Wait for pre-existing readers to complete
I Reclaim when no subscriber exists

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 21 / 34

How to use RCU

Outline

1 Why RCU?

2 What is RCU?

3 How to use RCU

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 22 / 34

How to use RCU

Read-side critical section
How to use RCU

I A period during which the dereferenced entry is valid
I Dereferenced objects in the section are valid until the section is

closed
I Even though the object is retracted/replaced by other thread
I Might see a stale value

I Should not block nor sleep within the section
I Might be preempted if CONFIG PREEMPT RCU

I Can be nested within a context
I Can be overlapped between contexts

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 23 / 34

How to use RCU

rcu read lock() / rcu read unlock()
How to use RCU

I rcu read lock() opens a read-side
critical section

I rcu read unlock() closes the
read-side critical section

I rcu read lock() and
rcu read unlock() are paired within
the context

1 void thr_0_level_0(void)
2 {
3 rcu_read_lock();
4 level_1();
5 rcu_read_unlock();
6 }
7 void thr_1_level_0(void)
8 {
9 rcu_read_lock();

10 level_1();
11 rcu_read_unlock();
12 }
13 void level_1(void)
14 {
15 rcu_read_lock();
16 /* ... */
17 rcu_read_lock();
18 /* ... */
19 rcu_read_unlock();
20 /* ... */
21 rcu_read_unlock();
22 }

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 24 / 34

How to use RCU

List of RCU APIs
How to use RCU

Category Publish Retract Subscribe

Pointers rcu assign pointer() rcu assign pointer(..., NULL) rcu dereference()

Lists
list add rcu()

list del rcu() list for each entry rcu()list add tail rcu()
list replace rcu()

Hlists

hlist add after rcu()

hlist del rcu() hlist for each ehtry rcu()
hlist add before rcu()
hlist add head rcu()
hlist replace rcu()

I APIs in include/linux/rcupdate.h, rculist.h

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 25 / 34

How to use RCU

Publish: rcu assign pointer(), list add rcu()
How to use RCU

I typeof(p) rcu assign pointer(p, typeof(p) v);
I Assign a new value v to an RCU-protected pointer p
I Return the new value
I Memory-barrier instructions are performed

I void list add rcu(struct list head *new, struct
list head *list)

I Insert a new list entry new into the RCU-protected list list
I void list replace rcu(struct list head *old,
struct list head *new)

I Replace old with new

I No need to rcu read lock()/rcu read unlock()

I May need to serialize concurrent updates

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 26 / 34

How to use RCU

Publish: rcu assign pointer(), list add rcu()
How to use RCU

1 struct foo {
2 struct list_head list;
3 int a;
4 int b;
5 int c;
6 };
7
8 struct foo *gp = NULL;
9 LIST_HEAD(gl);

10
11 /* */
12
13 struct foo *p = kzalloc(sizeof(*p), GFP_KERNEL);
14
15 INIT_LIST_HEAD(&p->list);
16 p->a = 1;
17 p->b = 2;
18 p->c = 3;
19
20 spin_lock(&gp_mutex);
21 rcu_assign_pointer(gp, p);
22
23 list_add_rcu(&p->list, &gl);
24 spin_unlock(&gp_mutex);

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 27 / 34

How to use RCU

Subscribe: rcu dereference()
How to use RCU

I rcu dereference(p)
I Fetch an RCU-protected pointer p

I Does not actually dereference the
pointer, but, protect the pointer for later
dereferencing

I Returned value is valid only with the
enclosing read-side critical section.

I Use a local variable to dereference
multiple fields

I Look ugly
I rcu dereference() does not

guarantee the same pointer will be
returned if an update happened while in
the critical section

1 rcu_read_lock();
2 p = rcu_dereference(gp)->a;
3 rcu_read_unlock();
4
5 x = p; /* BUG */
6
7 rcu_read_lock();
8 y = p; /* BUG */
9

10 p = rcu_dereference(gp)->a;
11 /* gp updated */
12 q = rcu_dereference(gp)->b;
13 /* p and q might not be from
14 the same object */
15
16 x = rcu_dereference(gp);
17 p = x->a;
18 q = x->b;
19 rcu_read_unlock();

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 28 / 34

How to use RCU

Subscribe: rcu dereference protected()
How to use RCU

I rcu dereference protected(p, c)

I Fetch a RCU-protected pointer when updates are prevented
I Skip performing memory barrier operations

I c: the condition under which the dereferencing will take place
I Useful for lock-protected copy-update

1 spin_lock(&gp_mutex);
2 old = rcu_dereference_protected(
3 gp, lockdep_is_held(&gp_mutex));
4 spin_unlock(&gp_mutex);

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 29 / 34

How to use RCU

Subscribe: list for each entry rcu()
How to use RCU

I list for each entry rcu(pos, head, member)

I Iterate each entry in head as pos
I Check other APIs from include/linux/rculist.h

1 list_for_each_entry_rcu(p, entry_list, list) {
2 x = p->a;
3 y = p->b;
4 }

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 30 / 34

How to use RCU

Reclaim: synchronize rcu()
How to use RCU

I synchronize rcu()
I Blocked until all currently ongoing read-side critical sections are

closed
I Safe to reclaim the old data upon the return

1 /* ... */
2 spin_lock(&gp_mutex);
3 old = rcu_dereference_protected(gp,

lockdep_is_held(&gp_mutex));
4 *new = *old;
5 new->a = 0xdead;
6 new->b = 0xbeef;
7 rcu_assign_pointer(gp, new);
8 spin_unlock(&gp_mutex);
9

10 synchronize_rcu();
11
12 kfree(old);

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 31 / 34

How to use RCU

Reclaim: call rcu()
How to use RCU

I void call rcu(struct rcu head *head, (void
*callback)(struct rcu head *))

I Invokes a callback function after a grace period has elapsed
I Require to attach struct rcu head in the data structure
I Should not be blocked

I Might be called from either softirq or process context
I kfree rcu(p, rcu header)

1 struct foo {
2 struct list_head list;
3 struct rcu_head rcu;
4 int a;
5 int b;
6 int c;
7 };
8
9 void foo_reclaim(struct rcu_head *rp)

10 {
11 struct foo *fp = container_of(rp,

struct foo, rcu);
12 foo_cleanup(fp->a);
13 kfree(fp);
14 }

1 void foo_update_1(void)
2 {
3 old = rcu_dereference(gp);
4 /* ... */
5 rcu_assign_pointer(gp, new);
6
7 call_rcu(old->rcu, foo_reclaim);
8 }
9

10 void foo_update_2(void)
11 {
12 old = rcu_dereference(gp);
13 /* ... */
14 rcu_assign_pointer(gp, new);
15
16 kfree_rcu(old, rcu);
17 }Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 32 / 34

How to use RCU

Takeaway

I RCU: Read-Copy Update
I Multiple readers + updaters
I Low-overhead and wait-free in read side
I Publisher/subscriber model
I Updated objects are reclaimed after the grace period

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 33 / 34

Bibliography

Bibliography I

[1] What is RCU, fundamentally?
http://lwn.net/Articles/262464.
Accessed: 2017-03-30.

[2] KOCH, G.
Discovering multi-core: Extending the benefit of moore’s law.
http://cache-www.intel.com/cd/00/00/22/09/220997_220997.pdf.
Accessed: 2006-05-22.

Sang-Hoon Kim (SSRG@VT) LKP - RCU April 15, 2017 34 / 34

http://lwn.net/Articles/262464
http://cache-www.intel.com/cd/00/00/22/09/220997_220997.pdf

	Why RCU?
	What is RCU?
	Introduction

	How to use RCU

