
Linux Kernel Programming
The Block Layer

Pierre Olivier

Systems Software Research Group @ Virginia Tech

April 26, 2017

Pierre Olivier (SSRG@VT) LKP - Block Layer April 26, 2017 1 / 25



Outline

1 Block devices and the block layer

2 Buffers and buffer heads

3 The bio structure and request queues

4 IO schedulers

Pierre Olivier (SSRG@VT) LKP - Block Layer April 26, 2017 2 / 25



Block devices and the block layer

Outline

1 Block devices and the block layer

2 Buffers and buffer heads

3 The bio structure and request queues

4 IO schedulers

Pierre Olivier (SSRG@VT) LKP - Block Layer April 26, 2017 3 / 25



Block devices and the block layer Blocks vs character devices

Block devices and the block layer
Blocks vs character devices

I There are 2 main types of devices in Linux:
I Character devices are accessed sequentially as a stream of bytes,

byte by byte
I Examples: serial port, mouse, keyboard, etc.
I Stream access: typing test on the keyboard result in the device

sending t, e, s, then t to the driver
I Block devices are accessed randomly, by chunks

I Examples: HDD, SSD, CD/DVD, floppy disks, etc.
I Random access: device can seek to a specific position,

potentially non-sequential compared to the previous one

Pierre Olivier (SSRG@VT) LKP - Block Layer April 26, 2017 4 / 25



Block devices and the block layer Blocks vs character devices

Block devices and the block layer
Blocks vs character devices (2)

I Character device
management is relatively
simple and there is no
subsystem entirely dedicated
to them

I Block devices are
performance sensitive
(mostly used for storage)

I There is a generic layer in
the kernel dedicated to the
management of block
devices: the block layer

Pierre Olivier (SSRG@VT) LKP - Block Layer April 26, 2017 5 / 25



Block devices and the block layer Block devices

Block devices and the block layer
Block devices

I Minimum addressable unit in a block device: sector
I Physical property of the device
I Generally 512 bytes
I Referred to as sectors, hard sectors, device blocks

I Software access the filesystem (partition) in blocks
I Must a multiple of a sector (device limitation)
I Must be a power of two and < to a page size (kernel limitation)
I Generally: 512 bytes, 1 kilobyte, 4 kilobytes
I Referred to as blocks, filesystem blocks, I/O blocks

Pierre Olivier (SSRG@VT) LKP - Block Layer April 26, 2017 6 / 25



Buffers and buffer heads

Outline

1 Block devices and the block layer

2 Buffers and buffer heads

3 The bio structure and request queues

4 IO schedulers

Pierre Olivier (SSRG@VT) LKP - Block Layer April 26, 2017 7 / 25



Buffers and buffer heads

Buffers and buffer heads

I Read/written blocks are stored in memory in buffers
I A buffer is an object representing one block in memory
I A page can generally hold multiple buffers
I A buffer has a descriptor, a buffer head

I buffer head structure defined in linux/buffer head.h:

1 struct buffer_head {
2 unsigned long b_state; /* buffer state flags */
3 struct buffer_head; *b_this_page; /* list of page’s buffers */
4 struct page *b_page; /* associated page */
5 sector_t b_blocknr; /* starting block number */
6 size_t b_size; /* size of mapping */
7 char *b_data; /* pointer to data within the page */
8 struct block_device *b_bdev; /* associated block device */
9 bh_end_io_t *b_end_io; /* I/O completion */

10 void *b_private; /* reserved for b_end_io */
11 struct list_head b_assoc_buffers; /* associated mappings */
12 struct address_space *b_assoc_map; /* associated address space */
13 atomic_t b_count; /* use count */
14 }

Pierre Olivier (SSRG@VT) LKP - Block Layer April 26, 2017 8 / 25



Buffers and buffer heads Buffer state

Buffers and buffer heads
Buffer state

I State specified by the b state field
I Legal values stored in the enum bh state bits in
include/linux/buffer head.h:

I BH Uptodate: contains valid data
I BH Dirty: buffer is dirty
I BH Lock: buffer is locked (disk I/O in progress)
I BH Req: buffer is involved in an I/O request
I BH Mapped: valid buffer mapped to an on-disk block
I BH New: newly mapped buffer, not yet accessed
I BH Async Read: asynchronous read disk I/O in progress
I BH Async Write: asynchronous write I/O in progress

Pierre Olivier (SSRG@VT) LKP - Block Layer April 26, 2017 9 / 25



Buffers and buffer heads Buffer state

Buffers and buffer heads
Buffer state (2), usage count

I BH Delay: delayed allocation, buffer is not associated to a block yet
I BH Boundary: buffer forms the boundary of contiguous blocks, next block is

discontinuous
I BH Write EIO: buffer incurred an I/O error on write
I BH Eopnotsupp: buffer incurred a ”not supported” error
I BH Unwritten: space for buffer has been allocated on disk but no data yet

written
I BH Quiet: suppress errors for this buffer

I Last item of the enum is BH Privatestart:
I Specifies the first bit usable by other code (drivers)

I Buffer usage count modified by get bh() and put bh()

Pierre Olivier (SSRG@VT) LKP - Block Layer April 26, 2017 10 / 25



The bio structure and request queues

Outline

1 Block devices and the block layer

2 Buffers and buffer heads

3 The bio structure and request queues

4 IO schedulers

Pierre Olivier (SSRG@VT) LKP - Block Layer April 26, 2017 11 / 25



The bio structure and request queues The bio structure

The bio structure and request queues
The bio structure

I Basic container for an active block I/O operation
I Uses segments to represent chunks of a buffer transferred to/from

disk from/to memory
I An individual buffer being divided into segments, it needs not to be

contiguous in memory

Pierre Olivier (SSRG@VT) LKP - Block Layer April 26, 2017 12 / 25



The bio structure and request queues The bio structure

The bio structure and request queues
The bio structure (2)

I struct bio defined in include/linux/blk types.h

1 struct bio {
2 struct bio *bi_next; /* list of requests */
3 struct block_device *bi_bdev; /* associated block device */
4 unsigned short bi_flags; /* status and command flags */
5 unsigned int bi_phys_segments; /* number of segments */
6 struct bvec_iter bi_iter; /* vector iterator */
7 unsigned int bi_seg_front_size; /* size of front segment */
8 unsigned int bi_seg_back_size; /* size of last segment */
9 bio_end_io_t *bi_end_io; /* I/O completion method */

10 void *bi_private; /* owner private data */
11 unsigned short bi_vcnt; /* number of bio_vecs */
12 unsigned short bi_max_vecs; /* maximum bio_vecs possible */
13 atomic_t __bi_cnt; /* usage counter */
14 struct bio_vec *bi_io_vec; /* bio_vec list */
15 struct bio_vec bi_inline_vecs[0]; /* inline bio vectors */
16 /* ... */
17 };

I struct bvec iter defined in include/linux/bvec.h:

1 struct bvec_iter {
2 sector_t bi_sector; /* target address on the device in sectors */
3 unsigned int bi_size; /* I/O count */
4 unsigned int bi_idx; /* current index into bi_io_vec */
5 /* ... */
6 };

Pierre Olivier (SSRG@VT) LKP - Block Layer April 26, 2017 13 / 25



The bio structure and request queues The bio structure

The bio structure and request queues
The bio structure

Pierre Olivier (SSRG@VT) LKP - Block Layer April 26, 2017 14 / 25



The bio structure and request queues I/O vectors

The bio structure and request queues
I/O vectors

I I/O vectors represented by bio vec structures, composing the
bi io vec array (representing the full buffer)

I Defined in include/linux/bio.h:

1 struct bio_vec {
2 /* pointer to the target physical page: */
3 struct page *bv_page;
4 /* length in bytes of the buffer: */
5 unsigned int bv_len;
6 /* offset inside the page where the buffer resides: */
7 unsigned int bv_offset;
8 };

Pierre Olivier (SSRG@VT) LKP - Block Layer April 26, 2017 15 / 25



The bio structure and request queues Request queues

The bio structure and request queues
Request queues

I Block devices maintain request queues to store pending I/O
requests

I Request queues are represented by the request queue
structure (include/linux/blkdev.h)

I Requests are added to the queue by high-level code (ex:
filesystem),

I Requests are pulled from the queue by the block device driver and
submitted to the device

I A single request:
I Represented by struct request
I Can operate on multiple consecutive disk blocks, so it is composed

of one or more bio objects

Pierre Olivier (SSRG@VT) LKP - Block Layer April 26, 2017 16 / 25



IO schedulers

Outline

1 Block devices and the block layer

2 Buffers and buffer heads

3 The bio structure and request queues

4 IO schedulers

Pierre Olivier (SSRG@VT) LKP - Block Layer April 26, 2017 17 / 25



IO schedulers Presentation

IO schedulers
Presentation

I Directly sending requests to the disk as they arrive is sub-optimal:
I Increase random accesses resulting in a lot of movement of the

HDD head → seeks
I The kernel tries to reduce seeking as much as possible

I The kernel combines and re-order I/O requests in the request
queue:

I Merging
I Sorting

I Rules for merging and sorting are defined by the I/O scheduler
I Multiple I/O scheduler models implemented in Linux

I The I/O scheduler virtualizes the disk as the process scheduler
virtualizes the CPU

Pierre Olivier (SSRG@VT) LKP - Block Layer April 26, 2017 18 / 25



IO schedulers The Linux elevator

IO schedulers
The Linux elevator

I Linus Elevator: default
in 2.4, replaced in 2.6

I Define where an
upcoming request
should be added into
the queue:

1 Back/front merge
2 Sorted insertion,

performed only if no
request already in
the queue is older
than a give threshold
→ does not
efficiently prevents
starvation

Pierre Olivier (SSRG@VT) LKP - Block Layer April 26, 2017 19 / 25



IO schedulers The deadline IO scheduler

IO schedulers
The deadline IO scheduler

I Problems with Linux Elevator:
I A stream of requests to an on-disk specific location can starve

other requests
I Write starving reads issue

I Contrary to reads, write are asynchronous from the application
standpoint

I Read latency is important for the system → read starvation must be
minimized

I The deadline scheduler tries to provide fairness while
maximizing the global throughput

I Implemented in block/deadline-iosched.c

Pierre Olivier (SSRG@VT) LKP - Block Layer April 26, 2017 20 / 25



IO schedulers The deadline IO scheduler

IO schedulers
The deadline IO scheduler (2)

I Each request is given an expiration time, the deadline:
I Reads: now + .5s
I Writes: now + 5s

Pierre Olivier (SSRG@VT) LKP - Block Layer April 26, 2017 21 / 25



IO schedulers The anticipatory IO scheduler

IO schedulers
The anticipatory IO scheduler

I Anticipatory IO scheduler
I Dedicated to solve deadline throughput issues on certain scenarios
I Removed in 2.6.18, replaced by CFQ

Pierre Olivier (SSRG@VT) LKP - Block Layer April 26, 2017 22 / 25



IO schedulers The complete fair queuing IO scheduler

IO schedulers
The complete fair queuing IO scheduler

I Completely Fair Queuing I/O scheduler (CFQ)
I Per-process request queues
I block/cfq-iosched.c

Pierre Olivier (SSRG@VT) LKP - Block Layer April 26, 2017 23 / 25



IO schedulers The noop IO scheduler

IO schedulers
The noop IO scheduler

I Noop I/O scheduler
I Does not perform anything in particular apart from merging

sequential request
I Used for truly random devices such as flash cards
I block/noop-iosched.c

Pierre Olivier (SSRG@VT) LKP - Block Layer April 26, 2017 24 / 25



IO schedulers IO scheduler selection

IO schedulers
IO scheduler selection

I I/O scheduler model can be selected at boot time as a kernel
parameter: elevator=<value>

I value can be:
I cfq for the completely fair queuing I/O scheduler
I deadline for the deadline scheduler
I noop for the noop scheduler

Pierre Olivier (SSRG@VT) LKP - Block Layer April 26, 2017 25 / 25


	Block devices and the block layer
	Blocks vs character devices
	Block devices

	Buffers and buffer heads
	Buffer state

	The bio structure and request queues
	The bio structure
	I/O vectors
	Request queues

	IO schedulers
	Presentation
	The Linux elevator
	The deadline IO scheduler
	The anticipatory IO scheduler
	The complete fair queuing IO scheduler
	The noop IO scheduler
	IO scheduler selection


