Linux Kernel Programming

The Page Cache and Page Writeback

Pierre Olivier

Systems Software Research Group @ Virginia Tech

April 27, 2017

[T Tech
@

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 1/25

@ General notions about caching

@ The Linux page cache

(@) Flusher threads

[T Tech
@

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 2/25

General notions about caching

Outline

@ General notions about caching

[T Tech
@

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 3/25

General notions about caching Page cache: general presentation

General notions about caching

Page cache: general presentation

» The page cache buffers disk I/0 in RAM
» RAM access is several orders of magnitude faster than disk

execute typical instruction 1/1,000,000,000 sec = 1 nanosec
fetch from L1 cache memory 0.5 nanosec
branch misprediction 5 nanosec
fetch from L2 cache memory 7 nanosec
Mutex lock/unlock 25 nanosec
fetch from main memory 100 nanosec
send 2K bytes over 1Gbps network 20,000 nanosec
read IMB sequentially from memory 250,000 nanosec
fetch from new disk location (seek) 8,000,000 nanosec
read IMB sequentially from disk 20,000,000 nanosec
send packet US to Europe and back ||150 milliseconds = 150,000,000 nanosec

q .IiITech
» Source: http://norvig.com/21-days.html#answers b

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 4/25

http://norvig.com/21-days.html#answers

General notions about caching Page cache: general presentation

General notions about caching

Page cache: general presentation

» Why caching?

Financial 1 device 1

600000 - - - -
O SK MRS DRI JK: R R +
Write
500000
T 400000
o
3
& 300000
E B
°
g o T
<
200000
100000
0
0 le+07 2e+07 3e+07 4e +07 5e+07
Time (ms)

Pierre Olivier (SSRG@VT) LKP - Page Cache

» Traces from
http:
//traces.cs.
umass.edu/
index.php/
Storage/
Storage

Virginia

[T1Tech
@

April 27, 2017 5/25

http://traces.cs.umass.edu/index.php/Storage/Storage
http://traces.cs.umass.edu/index.php/Storage/Storage
http://traces.cs.umass.edu/index.php/Storage/Storage
http://traces.cs.umass.edu/index.php/Storage/Storage
http://traces.cs.umass.edu/index.php/Storage/Storage
http://traces.cs.umass.edu/index.php/Storage/Storage

General notions about caching Page cache: general presentation

General notions about caching

Page cache: general presentation

» Page cache: physical pages in RAM holding disk content
(blocks)
» Disk is called the backing store
» Works for regular files, memory mapped files, and block devices
files
» Dynamic size:
» Grows to consume free memory unused by kernel and processes
» Shrinks to relieve memory pressure
» In case of a read () operation, data presence in the page cache
is first checked
» If data is present in the cache, cache hit
» Otherwise, cache miss: VFS asks the (concrete) filesystem to read
the data from disk

» Read (and write) operations populates the page cache
» Files are cached on a per-page basis

Vi ek
L

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 6/25

General notions about caching Write caching

General notions about caching

Write caching

» 3 main policies for cache write implementation:
» No-Write: all writes are directed to disk and cached (read) data is
invalidated
» Costly because no write caching + invalidation
» Write-through: writes are directed to disk and also update the
cache
» Cache is kept coherent with disk, no need to invalidate
» Write-back: writes update the cache, and disk is not directly
updated
» This is the Linux page cache policy
» Pages written are marked dirty
» Regularly synchronized with the disk and unmarked as dirty through
a process called writeback
» Benefit is performance as the cache absorbs temporal locality to
reduce disk access —_—
» Downside is complexity in implementation and management @) Tech

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 7125

General notions about caching Write caching

General notions about caching
Write caching (2)

nvalidate
No-write '
Application Cache
Write req.

Write-through

Application |@Cache

Write-back

Pierre Olivier (SSRG@VT) LKP - Page Cache

(later)
Application = |@Cache

Disk

Disk

Disk

April 27, 2017

Vi ek
L

8/25

General notions about caching Cache eviction: generalities

General notions about caching

Cache eviction: generalities

» Evicting data from the cache is needed when:

» The cache needs to shrink (memory pressure)
» The cache cannot grow and we need to make space for upcoming
data
» In Linux:
» Select clean (not dirty) pages and replace them/release the
memory
» Not enough clean pages — force writeback
» Eviction policy: how to select which data to remove from the
cache
» |deal cache: evict pages that will not be accessed in the future
(clairvoyant algorithm)
Virgi

nia
[T]Tech
@

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 9/25

General notions about caching Cache eviction: Least Recently Used

General notions about caching

Cache eviction: Least Recently Used

» The clairvoyant algorithm is not implementable in reality

» Least Recently Used (LRU) tries to approach it with information
from the past

» LRU keeps track of when each page in the cache is accessed
» Pages are sorted in timestamp usage order

50 —» 25 I 12 | 10
A

Least recently used
page, next to evict

» LRU issue: multiple files are accessed only once Viga

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 10/25

General notions about caching Cache eviction: the two-list strategy

General notions about caching

Cache eviction: the two-list strategy

Two-List or LRU/2 strategy
. Active list: hot pages,
Actll_vet L Lot L not available for
1S eviction
Inactive
list > ™ >
Evict from

inactive list only

VB ech
L

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 11/25

General notions about caching Cache eviction: the two-list strategy

General notions about caching

Cache eviction: the two-list strategy

Two-List or LRU/2 strategy

Active
list T — —-

Inactive
list > > >

Accessed pages not in the list are added to
the the inactive list

Vit
L

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 11/25

General notions about caching Cache eviction: the two-list strategy

General notions about caching

Cache eviction: the two-list strategy

Two-List or LRU/2 strategy

Active
list Wi

Inactive T
list "[- —>

Inactive page accessed
are added to the active list

Vit
L

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 11/25

General notions about caching Cache eviction: the two-list strategy

General notions about caching

Cache eviction: the two-list strategy

Two-List or LRU/2 strategy

Active > > —> > —
ist

e A ey
Inactive

Lists are halanced and active pages are evicted in the inactive list

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017

Vit
L

11/25

The Linux page cache

Outline

@ The Linux page cache

[T Tech
@

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 12/25

The Linux page cache address-space object

The Linux page cache

address_space object

» The address_space object represents an entity present in the
page cache
> A file
» 1 address space per entity (represent the physical pages containing

the entity)

address_space
\

T
File

Process
& \ /
\ /

Process
2 |

N "l

vIn_area_struct

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 13/25

The Linux page cache ddress_space object

The Linux page cache

address_space object (

» Defined in include/linux/fs.h:

1| struct address_space {

2 struct inode *host; /* owning inode */

8 struct radix_tree_root page_tree; /* radix tree of all pages */

4 spinlock_t tree_lock; /* page tree lock */

5 unsigned int i_mmap_writable; /% VM _SHARED (writable) mapping count =/

6 struct rb_root i_mmap; /* list of all mappings */

7 unsigned long nrpages; /* total number of pages */

8 pgoff_t writeback_index; /* writeback start offset =/

9 struct address_space_operations a_ops; /* operations table x/

10 unsigned long flags; /* error flags */

11 gfp_t gfp_mask; /* gfp mask for allocation */

12 struct backing_dev_info backing_dev_info; /* read-ahead info x/

13 spinlock_t private_lock; /* private lock */

14 struct list_head private_list; /* private list */

15 struct address_space assoc_mapping; /* associated buffers */

16 /* ... %/

171}
[T]Tech
@

Pierre Olivier (SSRG@V

April 27, 2017 14 /25

The Linux page cache address-space object

The Linux page cache

address_space object (3)

» Interesting fields of the address_space structure:
» i_mmap: priority search tree of all shared and private mappings
concerning this address space
» nrpages: total number of pages in the address space
» host: points to the inode of the corresponding file
» a_ops: address space operations table
» Similar to VFS operations on inodes, dentries, etc.Similar to VFS
operations on inodes, dentries, etc.

VB ech
L

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 15/25

The Linux page cache address_space operations

The Linux page cache

address_space operations

» address_space_operations defined in include/
linux/fs.h

struct address_space_operations {

1
2 int (xwritepage) (struct page *page, struct writeback_control x*wbc);

8] int (*readpage) (struct file *, struct page x*);

4 int (*writepages) (struct address_space x, struct writeback_control x);
B int (xset_page_dirty) (struct page xpage);

6 int (*readpages) (struct file xfilp, struct address_space *mapping,

7 struct list_head xpages, unsigned nr_pages);

8 int (xwrite_begin) (struct file x, struct address_space smapping,

9 loff_t pos, unsigned len, unsigned flags,

10 struct page **pagep, void *xfsdata);

1 int («write_end) (struct file x, struct address_space smapping,

12 loff_t pos, unsigned len, unsigned copied,

13 struct page *page, void xfsdata);

14 /* ... %/

15()

» Functions implement page /O for this cached object

» Each backing store implements its own
address_space_operations instance (ex: filesystems)

Pierre Olivier (SSRG@VT, LKP - Page Cache April 27, 2017

VB ech
L

16/25

The Linux page cache ad _space operations

The Linux page cache

address_space operations

» Page read operation: read () function from the
file_operations
» Search the data in the page cache:

1

page = find_get_page (mapping, index);
» mapping is the corresponding address_space
» index is the searched page index
» Returns NULL is the page is not present

» Adding the page to the page cache:

struct page =*page;
int error;
/5 SEEEED i pRED O » Then, read data from disk:
page = page_cache_alloc_cold (mapping) ;
if (!page)
/* allocation error =*/
/* add the page to the page cache x/
error = add_to_page_cache_lru(page, mapping,
index, GFP_KERNEL) ;
9| if (error)

1| error = mapping->a_ops->readpage (file,
page) ;

0N U A WN =

10 /* error during page insertion in the page

nia
[T Tech
cache */ L)

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 17 /25

The Linux page cache space operations

The Linux page cache

address_space operations (2)

» Page write operation:
» When a page is modified in the page cache, it is set as dirty:

1

SetPageDirty (page) ;

> It will be written later (writeback)

» Default write path: in mm/filemap.c

1| /* search the page cache for the desired page. If the page is not present,

2| an entry is allocated and added: =/

3| page = __grab_cache_page (mapping, index, &cached_page, &lru_pvec);

4| /*x Set up the write request: =/

5| status = a_ops->write_begin(file, mapping, pos, bytes, flags, &page, &fsdata);

6| /* Copy data from user-space into a kernel buffer: */

7| copied = iov_iter_copy_from user_atomic(page, i, offset, bytes);

8| /* write data to disk: */

9| status = a_ops->write_end(file, mapping, pos, bytes, copied, page, fsdata);
Vhp?ﬁlé&

L

Pierre Olivier (SSRG@VT, LKP - Page Cache April 27, 2017 18/25

The Linux page cache The radix tree

The Linux page cache

The radix tree

» For any page I/O (read/write) the concerned page is searched in
the page cache
» Page cache lookup must be fast

» Searching in the page cache is done with an address_space
plus an offset value, a page index

» Each address_space has a radix tree indexing its content
(page_tree member)

» Specific type of binary tree
» Allows quick searching for a page given the file offset
> radix_tree_lookup ()
» More info on the radix tree:
https://0xax.gitbooks.io/linux-insides/content/
DataStructures/radix—-tree.html Virgis

nia
[T]Tech
@

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 19/25

https://0xax.gitbooks.io/linux-insides/content/DataStructures/radix-tree.html
https://0xax.gitbooks.io/linux-insides/content/DataStructures/radix-tree.html

The Linux page cache The old page hash table

The Linux page cache
The old page hash table

» The radix tree was introduced in 2.6 to replace a hash table
mechanism:
» Searching for a hash returned a doubly linked list of pages hashing
to the same value
» If the page was in the page cache, then it was contained in the list
» Hash table had 3 main problems:
@ Protected by a single lock, high contention
@ Large hash as it covered all the pages in the page cache — large

memory consumption
@ High performance cost for searching a page that is not in the page

cache
Virgi

nia
[T]Tech
@

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 20/25

Flusher threads

Outline

(@) Flusher threads

[T Tech
@

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 21/25

Flusher threads Generalities

Flusher threads

Generalities

» Write operation are deferred, data is marked dirty
» RAM data is out-of-sync with the storage media
» Dirty page writeback occurs:

» Free memory is low and the page cache needs to shrink
» Dirty data grows older than a specific threshold
» User process calls sync () or fsync ()

» Multiple flusher threads are in charge of syncing dirty pages from
the page cache to disk

@ To shrink the page cache when free memory amount becomes low
@ To sync data that has been dirty for a given time

Vi ek
L

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 22/25

Flusher threads Generalities

Flusher threads

Generalities (2)

» Flusher threads writeback on low memory:

» When the free memory goes below a given threshold, the kernel
calls wakeup_flusher_threads ()

» Wakes up one or several flusher threads performing writeback though
bdi_writeback_all (num_pages_to_write)

» Thread write data to disk until

@ num_pages_to_write have been written and
@ The amount of memory drops below the threshold

» Can consult and modify the threshold by reading and writing to:
/proc/sys/vm/dirty background.ratio

» Percentage of total memory
Virg

nia
[T]Tech
@

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 23/25

Flusher threads Generalities

Flusher threads

Generalities (3)

» Flusher threads writeback of old data:
» Page cache content is lost on power cut
» Pages should not stay dirty for too long
» At boot time a timer is initialized to wake up a flusher thread
calling wb_writeback ()
» Writes back all data older than a given value:
» /proc/sys/vm/dirty_expire_interval

» Timer reinitialized to expire at a given time in the future: now +
period
» /proc/sys/vm/dirty_writeback_interval
» Multiple other parameters related to the writeback and the control
of the page cache in general are presentin /proc/sys/vm
» More info: Documentation/sysctl/vm.txt

VB ech
L

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 24/25

Flusher threads Laptop mode

Flusher threads
Laptop mode

» Laptop mode is a writeback strategy designed to save power

» When not used, hard disk enters sleep state and stop spinning
» Saves a significant amount of power compared to active state

» Laptop mode tries to minimize spinning as much as possible:

» When a flusher thread wakes up to write back old data, a/l dirty
data is synced with the disk

» dirty_expire_interval and dirty_writeback_interval
are set to very large values (several minutes)

Vi ek
L

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 25/25

	General notions about caching
	Page cache: general presentation
	Write caching
	Cache eviction: generalities
	Cache eviction: Least Recently Used
	Cache eviction: the two-list strategy

	The Linux page cache
	address_space object
	address_space operations
	The radix tree
	The old page hash table

	Flusher threads
	Generalities
	Laptop mode

