
Linux Kernel Programming
The Page Cache and Page Writeback

Pierre Olivier

Systems Software Research Group @ Virginia Tech

April 27, 2017

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 1 / 25

Outline

1 General notions about caching

2 The Linux page cache

3 Flusher threads

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 2 / 25

General notions about caching

Outline

1 General notions about caching

2 The Linux page cache

3 Flusher threads

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 3 / 25

General notions about caching Page cache: general presentation

General notions about caching
Page cache: general presentation

I The page cache buffers disk I/O in RAM
I RAM access is several orders of magnitude faster than disk

I Source: http://norvig.com/21-days.html#answers

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 4 / 25

http://norvig.com/21-days.html#answers

General notions about caching Page cache: general presentation

General notions about caching
Page cache: general presentation

I Why caching?

I Traces from
http:
//traces.cs.
umass.edu/
index.php/
Storage/
Storage

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 5 / 25

http://traces.cs.umass.edu/index.php/Storage/Storage
http://traces.cs.umass.edu/index.php/Storage/Storage
http://traces.cs.umass.edu/index.php/Storage/Storage
http://traces.cs.umass.edu/index.php/Storage/Storage
http://traces.cs.umass.edu/index.php/Storage/Storage
http://traces.cs.umass.edu/index.php/Storage/Storage

General notions about caching Page cache: general presentation

General notions about caching
Page cache: general presentation

I Page cache: physical pages in RAM holding disk content
(blocks)

I Disk is called the backing store
I Works for regular files, memory mapped files, and block devices

files
I Dynamic size:

I Grows to consume free memory unused by kernel and processes
I Shrinks to relieve memory pressure

I In case of a read() operation, data presence in the page cache
is first checked

I If data is present in the cache, cache hit
I Otherwise, cache miss: VFS asks the (concrete) filesystem to read

the data from disk
I Read (and write) operations populates the page cache
I Files are cached on a per-page basis

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 6 / 25

General notions about caching Write caching

General notions about caching
Write caching

I 3 main policies for cache write implementation:
I No-Write: all writes are directed to disk and cached (read) data is

invalidated
I Costly because no write caching + invalidation

I Write-through: writes are directed to disk and also update the
cache

I Cache is kept coherent with disk, no need to invalidate
I Write-back: writes update the cache, and disk is not directly

updated
I This is the Linux page cache policy
I Pages written are marked dirty
I Regularly synchronized with the disk and unmarked as dirty through

a process called writeback
I Benefit is performance as the cache absorbs temporal locality to

reduce disk access
I Downside is complexity in implementation and management

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 7 / 25

General notions about caching Write caching

General notions about caching
Write caching (2)

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 8 / 25

General notions about caching Cache eviction: generalities

General notions about caching
Cache eviction: generalities

I Evicting data from the cache is needed when:
I The cache needs to shrink (memory pressure)
I The cache cannot grow and we need to make space for upcoming

data
I In Linux:

I Select clean (not dirty) pages and replace them/release the
memory

I Not enough clean pages → force writeback
I Eviction policy: how to select which data to remove from the

cache
I Ideal cache: evict pages that will not be accessed in the future

(clairvoyant algorithm)

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 9 / 25

General notions about caching Cache eviction: Least Recently Used

General notions about caching
Cache eviction: Least Recently Used

I The clairvoyant algorithm is not implementable in reality
I Least Recently Used (LRU) tries to approach it with information

from the past
I LRU keeps track of when each page in the cache is accessed

I Pages are sorted in timestamp usage order

I LRU issue: multiple files are accessed only once

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 10 / 25

General notions about caching Cache eviction: the two-list strategy

General notions about caching
Cache eviction: the two-list strategy

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 11 / 25

General notions about caching Cache eviction: the two-list strategy

General notions about caching
Cache eviction: the two-list strategy

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 11 / 25

General notions about caching Cache eviction: the two-list strategy

General notions about caching
Cache eviction: the two-list strategy

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 11 / 25

General notions about caching Cache eviction: the two-list strategy

General notions about caching
Cache eviction: the two-list strategy

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 11 / 25

The Linux page cache

Outline

1 General notions about caching

2 The Linux page cache

3 Flusher threads

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 12 / 25

The Linux page cache address space object

The Linux page cache
address space object

I The address space object represents an entity present in the
page cache

I A file
I 1 address space per entity (represent the physical pages containing

the entity)

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 13 / 25

The Linux page cache address space object

The Linux page cache
address space object (2)

I Defined in include/linux/fs.h:

1 struct address_space {
2 struct inode *host; /* owning inode */
3 struct radix_tree_root page_tree; /* radix tree of all pages */
4 spinlock_t tree_lock; /* page tree lock */
5 unsigned int i_mmap_writable; /* VM_SHARED (writable) mapping count */
6 struct rb_root i_mmap; /* list of all mappings */
7 unsigned long nrpages; /* total number of pages */
8 pgoff_t writeback_index; /* writeback start offset */
9 struct address_space_operations a_ops; /* operations table */

10 unsigned long flags; /* error flags */
11 gfp_t gfp_mask; /* gfp mask for allocation */
12 struct backing_dev_info backing_dev_info; /* read-ahead info */
13 spinlock_t private_lock; /* private lock */
14 struct list_head private_list; /* private list */
15 struct address_space assoc_mapping; /* associated buffers */
16 /* ... */
17 }

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 14 / 25

The Linux page cache address space object

The Linux page cache
address space object (3)

I Interesting fields of the address space structure:
I i mmap: priority search tree of all shared and private mappings

concerning this address space
I nrpages: total number of pages in the address space
I host: points to the inode of the corresponding file
I a ops: address space operations table

I Similar to VFS operations on inodes, dentries, etc.Similar to VFS
operations on inodes, dentries, etc.

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 15 / 25

The Linux page cache address space operations

The Linux page cache
address space operations

I address space operations defined in include/
linux/fs.h

1 struct address_space_operations {
2 int (*writepage)(struct page *page, struct writeback_control *wbc);
3 int (*readpage)(struct file *, struct page *);
4 int (*writepages)(struct address_space *, struct writeback_control *);
5 int (*set_page_dirty)(struct page *page);
6 int (*readpages)(struct file *filp, struct address_space *mapping,
7 struct list_head *pages, unsigned nr_pages);
8 int (*write_begin)(struct file *, struct address_space *mapping,
9 loff_t pos, unsigned len, unsigned flags,

10 struct page **pagep, void **fsdata);
11 int (*write_end)(struct file *, struct address_space *mapping,
12 loff_t pos, unsigned len, unsigned copied,
13 struct page *page, void *fsdata);
14 /* ... */
15 }

I Functions implement page I/O for this cached object
I Each backing store implements its own
address space operations instance (ex: filesystems)

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 16 / 25

The Linux page cache address space operations

The Linux page cache
address space operations

I Page read operation: read() function from the
file operations

I Search the data in the page cache:
1 page = find_get_page(mapping, index);

I mapping is the corresponding address space
I index is the searched page index
I Returns NULL is the page is not present

I Adding the page to the page cache:

1 struct page *page;
2 int error;
3 /* allocate the page */
4 page = page_cache_alloc_cold(mapping);
5 if(!page)
6 /* allocation error */
7 /* add the page to the page cache */
8 error = add_to_page_cache_lru(page, mapping,

index, GFP_KERNEL);
9 if(error)

10 /* error during page insertion in the page
cache */

I Then, read data from disk:

1 error = mapping->a_ops->readpage(file,
page);

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 17 / 25

The Linux page cache address space operations

The Linux page cache
address space operations (2)

I Page write operation:
I When a page is modified in the page cache, it is set as dirty:

1 SetPageDirty(page);

I It will be written later (writeback)

I Default write path: in mm/filemap.c

1 /* search the page cache for the desired page. If the page is not present,
2 an entry is allocated and added: */
3 page = __grab_cache_page(mapping, index, &cached_page, &lru_pvec);
4 /* Set up the write request: */
5 status = a_ops->write_begin(file, mapping, pos, bytes, flags, &page, &fsdata);
6 /* Copy data from user-space into a kernel buffer: */
7 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
8 /* write data to disk: */
9 status = a_ops->write_end(file, mapping, pos, bytes, copied, page, fsdata);

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 18 / 25

The Linux page cache The radix tree

The Linux page cache
The radix tree

I For any page I/O (read/write) the concerned page is searched in
the page cache

I Page cache lookup must be fast
I Searching in the page cache is done with an address space

plus an offset value, a page index
I Each address space has a radix tree indexing its content

(page tree member)
I Specific type of binary tree
I Allows quick searching for a page given the file offset

I radix tree lookup()

I More info on the radix tree:
https://0xax.gitbooks.io/linux-insides/content/
DataStructures/radix-tree.html

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 19 / 25

https://0xax.gitbooks.io/linux-insides/content/DataStructures/radix-tree.html
https://0xax.gitbooks.io/linux-insides/content/DataStructures/radix-tree.html

The Linux page cache The old page hash table

The Linux page cache
The old page hash table

I The radix tree was introduced in 2.6 to replace a hash table
mechanism:

I Searching for a hash returned a doubly linked list of pages hashing
to the same value

I If the page was in the page cache, then it was contained in the list
I Hash table had 3 main problems:

1 Protected by a single lock, high contention
2 Large hash as it covered all the pages in the page cache → large

memory consumption
3 High performance cost for searching a page that is not in the page

cache

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 20 / 25

Flusher threads

Outline

1 General notions about caching

2 The Linux page cache

3 Flusher threads

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 21 / 25

Flusher threads Generalities

Flusher threads
Generalities

I Write operation are deferred, data is marked dirty
I RAM data is out-of-sync with the storage media

I Dirty page writeback occurs:
I Free memory is low and the page cache needs to shrink
I Dirty data grows older than a specific threshold
I User process calls sync() or fsync()

I Multiple flusher threads are in charge of syncing dirty pages from
the page cache to disk

1 To shrink the page cache when free memory amount becomes low
2 To sync data that has been dirty for a given time

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 22 / 25

Flusher threads Generalities

Flusher threads
Generalities (2)

I Flusher threads writeback on low memory:
I When the free memory goes below a given threshold, the kernel

calls wakeup flusher threads()
I Wakes up one or several flusher threads performing writeback though

bdi writeback all(num pages to write)
I Thread write data to disk until

1 num pages to write have been written and
2 The amount of memory drops below the threshold

I Can consult and modify the threshold by reading and writing to:
/proc/sys/vm/dirty background ratio

I Percentage of total memory

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 23 / 25

Flusher threads Generalities

Flusher threads
Generalities (3)

I Flusher threads writeback of old data:
I Page cache content is lost on power cut

I Pages should not stay dirty for too long
I At boot time a timer is initialized to wake up a flusher thread

calling wb writeback()
I Writes back all data older than a given value:

I /proc/sys/vm/dirty expire interval
I Timer reinitialized to expire at a given time in the future: now +

period
I /proc/sys/vm/dirty writeback interval

I Multiple other parameters related to the writeback and the control
of the page cache in general are present in /proc/sys/vm

I More info: Documentation/sysctl/vm.txt

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 24 / 25

Flusher threads Laptop mode

Flusher threads
Laptop mode

I Laptop mode is a writeback strategy designed to save power
I When not used, hard disk enters sleep state and stop spinning

I Saves a significant amount of power compared to active state
I Laptop mode tries to minimize spinning as much as possible:

I When a flusher thread wakes up to write back old data, all dirty
data is synced with the disk

I dirty expire interval and dirty writeback interval
are set to very large values (several minutes)

Pierre Olivier (SSRG@VT) LKP - Page Cache April 27, 2017 25 / 25

	General notions about caching
	Page cache: general presentation
	Write caching
	Cache eviction: generalities
	Cache eviction: Least Recently Used
	Cache eviction: the two-list strategy

	The Linux page cache
	address_space object
	address_space operations
	The radix tree
	The old page hash table

	Flusher threads
	Generalities
	Laptop mode

